全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Intrusion Detection Based on Clustering and Unlabeled Data
基于聚类的未标识数据的入侵检测*

Keywords: Intrusion Detection,Clustering,Pecentage of the Largest Clusters
入侵检测
,聚类,标识比例

Full-Text   Cite this paper   Add to My Lib

Abstract:

Automatical Intrusion Detection System is becoming more and more important in the area of Intrusion Detection System(IDS). Traditional IDS's which rely on labeled datas to train ,can't update the rules and detect intrusions automatically. This paper presents a frame work for automatically detecting intrusions:intrusion detection based on clustering and unlabeled data. It doesn't rely on labeled datas to train and can detect the new intrusions keeping low false positive rate.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133