全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Overview of nonlinear dimensionality reduction methods in manifold learning
流形学习中非线性维数约简方法概述

Keywords: dimensional reduction,manifold learning,multidimensional scaling(MDS),isomap,Laplacian eigenmap,locally linear embedding(LLE),local tangent space alignment(LTSA)
维数约简
,流形学习,多维尺度,等距映射,拉普拉斯特征映射,局部线性嵌入,局部切空间排列,流形学习,中非,线性维数,约简方法,learning,manifold,methods,dimensionality,reduction,nonlinear,应用,期望,未来研究方向,数据分析,维数约简,本质维数,高维数据,非线性,发现,比较,优势和不足

Full-Text   Cite this paper   Add to My Lib

Abstract:

A detailed retrospection was made on nonlinear dimensionality reduction methods in manifold learning, whose advantages and defects were pointed out respectively. Compared with traditional linear method, nonlinear dimensionality reduction methods in manifold learning could discover the intrinsic dimensions of nonlinear high-dimensional data effectively, help researcher to reduce dimensionality and analyzer data better, Finally, the prospect of nonlinear dimensionality reduction methods in manifold learning was discussed, so as to extend the application area of manifold learning.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133