全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MQPSO:Quantum-behaved Particle Swarm Optimization Based on Multi-swarm and Multi-phase Algorithm
MQPSO: 一种具有多群体与多阶段的QPSO算法*

Keywords: particle swarm optimization algorithm,quantum-behave,global convergence,particle prematurity
粒子群算法
,量子行为,全局收敛,早熟,多群体,多阶段,粒子群算法,Algorithm,Based,Standard,标准,测试结果,测试函数,收敛性能,搜索,利用,粒子群优化算法,量子行为,Particle,Swarm,Optimization,改进

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduced a improved Quantum-behaved Particle Swarm Optimization Algorithm,Multi-swarm and Multi-phase Quantum-behaved Particle Swarm Optimization(MQPSO).In this algorithm,it divides the whole particle swarm into different groups and searchs in different phases.It avoids particle prematurity and improves global search performance.The results of several improtant test functions confirm that the convergent performance of MQPSO outperforms Particle Swarm Optimization(PSO) algorithm and Quantum-behaved Particle Swarm Optimization algorithm.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133