全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2009 

MULTISCALE SIMULATION OF NANOINDENTATION ON Al THIN FILM
Al薄膜纳米压痕过程的多尺度模拟

Keywords: Al film,nanoindentation,multiscale,quasicontinuum method,initial defect
Al薄膜
,纳米压痕,多尺度,准连续介质法,初始缺陷

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to study the early stages of plastic deformation with initial defect under the action of an indenter, the nanoindentation processes of the single crystal aluminum thin film were simulated using the quasicontinuum method. The load vs displacement response curves and strain energy vs displacement curves of the single crystal aluminum thin film with initial defect and defect--free were presented, respectively. The nanoindentation processes under influences of the initial defect were investigated about dislocation nucleation, dislocation emission, Peierls stress and load necessary for dislocation emission. The results demonstrate that the load vs displacement response curves experience many times abrupt drops with the emission of dislocations beneath the indenter. The initial defect is found to be insignificant on nucleation and emission of the 1st and 3rd dislocation dipoles, but has a distinct effect on the 2nd dislocation dipole. The nucleation and emission of the 2nd dislocation dipole is postponed obviously because of the effect of initial defect, and then crack propagation is accompanied. The strain energy of single crystal aluminum thin film and Peierls stress of dislocation dipole beneath the indenter increase with deformation processes due to the severe lattice distortion in the thin film. Before the cleavage occurs, the load necessary for the 2nd dislocation dipole nucleation and emission increases in nanoindentation with initial defect, on the contrary, it decreases after the cleavage occurred. The nanohardness and Peierls stress in this simulation show a good agreement with relevant theoretical and experimental results.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133