全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of physically-based and data-driven models to predict microbial water quality in open channels

Keywords: transport,open channel,artificial neural networks,Escherichia coli

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, a physically-based hydraulic modeling tool and a data-driven approach using artificial neural networks (ANNs) were evaluated for their ability to simulate the fate and transport of microorganisms in a water system. To produce reliable data, a pipe network was constructed and a series of experiments using a fecal coliform indicator (Escherichia coli 15597) was conducted. For the physically-based model, morphological (pipe size, link length, slope, etc.) and hydraulic (flow rate) conditions were used as input variables, and for ANNs, water quality parameters (conductivity, pH, and turbidity) were used. Both approaches accurately described the fate and transport of microorganisms (physically-based model: correlation coefficient (R) in the range of 0.914 - 0.977 and ANNs: R in the range of 0.949 - 0.980), with the exception of one case at a low flow rate (q = 31.56 cm3/sec). This study also indicated that these approaches could be complementarily utilized to assess the vulnerability of water facilities and to establish emergency plans based on hypothetical scenarios.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133