|
环境科学学报(英文版) 2006
Assessing availability, phytotoxicity and bioaccumulation of lead to ryegrass and millet based on 0.1 mol/L Ca(NO3)2 extractionKeywords: heavy metals,bioconcentration factor,spike,extraction,lead (Pb) Abstract: This study was conducted to assess availability, phytotoxicity and bioaccumulation of lead (Pb) to ryegrass (Lolium perenne L.) and millet (Echinochloa crusgalli) based on the 0.1 mol/L Ca(NO3)2 extraction. Effect of soil properties on availability, phyto- toxicity and bioaccumulation of Pb to the two plants was also evaluated. Five soils with pH values varying from 3.8 to 7.3, organic carbon (OC) contents from 0.7% to 2.4%, and clay contents from 11.6% to 35.6% were selected. Soils were spiked with Pb to achieve a range of concentrations: 250, 500, 1000, 3000 and 5000 mg/kg. Pb availability in the spiked soils was estimated by extracting soil with 0.1 mol/L Ca(NO3)2. The results indicate that plants yield decreased with decreasing soil pH and increased with increasing soil clay and OC content. Negative relationship between available Pb and the relative dry matter growth (RDMG) of the two plants were significantly related. Available Pb used to assess EC20 (20% effective concentration) and EC50 (50% effective concentration) of millet was 119 and 300 mg/kg, respectively. Available Pb used to assess EC20 and EC50 of ryegrass was 63 and 157 mg/kg, respectively. Bioaccumulation, expressed as bioconcentration factors of Pb, was inversely related to soil pH, soil OC and clay content. Strong relationships were found between available lead and uptake by the two plants (r2 was 0.92 and 0.95 respectively). In general, 0.1 mol/L Ca(NO3)2 available Pb may be used to assess the availability, phytotoxicity and bioaccumulation of lead to the two plants tested.
|