全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Microarrays  2012 

Development and Optimization of a Thrombin Sandwich Aptamer Microarray

DOI: 10.3390/microarrays1020095

Keywords: aptamer, thrombin, fluorescence, bioassay, multiplexing microarray

Full-Text   Cite this paper   Add to My Lib

Abstract:

A sandwich microarray employing two distinct aptamers for human thrombin has been optimized for the detection of subnanomolar concentrations of the protein. The aptamer microarray demonstrates high specificity for thrombin, proving that a two-site binding assay with the TBA1 aptamer as capture layer and the TBA2 aptamer as detection layer can ensure great specificity at times and conditions compatible with standard routine analysis of biological samples. Aptamer microarray sensitivity was evaluated directly by fluorescent analysis employing Cy5-labeled TBA2 and indirectly by the use of TBA2-biotin followed by detection with fluorescent streptavidin. Sub-nanomolar LODs were reached in all cases and in the presence of serum, demonstrating that the optimized aptamer microarray can identify thrombin by a low-cost, sensitive and specific method.

References

[1]  Fenton, J.W., II. Thrombin specificity. Ann. N. Y. Acad Sci. 1981, 370, 468–495, doi:10.1111/j.1749-6632.1981.tb29757.x.
[2]  Shuman, M.A. Thrombin-cellular interactions. Ann. N. Y. Acad Sci. 1986, 485, 228–239, doi:10.1111/j.1749-6632.1986.tb34585.x.
[3]  Shuman, M.A.; Majerus, P.W. The measurement of thrombin in clotting blood by radioimmunoassay. J. Clin. Invest. 1976, 58, 1249–1258.
[4]  Becker, R.C.; Spencer, F.A. Thrombin: Structure, biochemistry, measurement, and status in clinical medicine. J. Thrombosis Thrombolysis 1998, 5, 215–229, doi:10.1023/A:1008843925851.
[5]  Suo, Z.; Citron, B.A.; Festoff, B.W. Thrombin: A potential proinflammatory mediator in neurotrauma and neurodegenerative disorders. Curr. Drug Targets Inflamm. Allergy 2004, 3, 105–114, doi:10.2174/1568010043483953.
[6]  Turgeon, V.L.; Houenou, L.J. The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res. Rev. 1997, 25, 85–95.
[7]  Cho, E.J.; Lee, J.W.; Ellington, A.D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 2009, 2, 241–264.
[8]  Khati, M. The future of aptamers in medicine. J. Clin. Pathol. (Lond.) 2010, 63, 480–487.
[9]  Famulok, M.; Mayer, G. Aptamer modules as sensors and detectors. Acc. Chem. Res. 2011, 44, 1349–1358, doi:10.1021/ar2000293.
[10]  Paborsky, L.R.; McCurdy, S.N.; Griffin, L.C.; Toole, J.J.; Leung, L.L. The single-stranded DNA aptamer-binding site of human thrombin. J. Biol. Chem. 1993, 268, 20808–20811.
[11]  Tasset, D.M.; Kubik, M.F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 1997, 272, 688–698, doi:10.1006/jmbi.1997.1275.
[12]  Macaya, R.F.; Schultze, P.; Smith, F.W.; Roe, J.A.; Feigon, J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. USA 1993, 90, 3745–3749, doi:10.1073/pnas.90.8.3745.
[13]  Ponikova, S.; Antalik, M.; Hianik, T. A circular dichroism study of the stability of guanine quadruplexes of thrombin DNA aptamers at presence of K+ and Na+ ions. Gen. Physiol. Biophys. 2008, 27, 271–277.
[14]  Ikebukuro, K.; Kiyohara, C.; Sode, K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens. Bioelectron. 2005, 20, 2168–2172, doi:10.1016/j.bios.2004.09.002.
[15]  Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem. 2007, 79, 1466–1473.
[16]  Tang, Q.; Su, X.; Loh, K.P. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. J. Colloid Interface Sci. 2007, 315, 99–106, doi:10.1016/j.jcis.2007.06.040.
[17]  Fang, L.; Lü, Z.; Wei, H.; Wang, E. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal. Chim. Acta 2008, 628, 80–86, doi:10.1016/j.aca.2008.08.041.
[18]  Wang, H.; Liu, Y.; Liu, C.; Huang, J.; Yang, P.; Liu, B. Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochem. Comm. 2010, 12, 258–261, doi:10.1016/j.elecom.2009.12.008.
[19]  Zhao, Q.; Li, X.-F.; Shao, Y.; Le, X.C. Aptamer-based affinity chromatographic assays for thrombin. Anal. Chem. 2008, 80, 7586–7593.
[20]  Edwards, K.A.; Wang, Y.; Baeumner, A.J. Aptamer sandwich assays: Human α-thrombin detection using liposome enhancement. Anal. Bioanal. Chem. 2010, 398, 2645–2654.
[21]  Chen, J.; Zhang, J.; Li, J.; Yang, H.-H.; Fu, F.; Chen, G. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Biosens. Bioelectron. 2010, 25, 996–1000, doi:10.1016/j.bios.2009.09.015.
[22]  Tennico, Y.H.; Hutanu, D.; Koesdjojo, M.T.; Bartel, C.M.; Remcho, V.T. On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal. Chem. 2010, 82, 5591–5597.
[23]  Lao, Y.-H.; Peck, K.; Chen, L.-C. Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal. Chem. 2009, 81, 1747–1754, doi:10.1021/ac801285a.
[24]  Zhao, Q.; Lu, X.; Yuan, C.-G.; Li, X.-F.; Le, X.C. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection. Anal. Chem. 2009, 81, 7484–7489, doi:10.1021/ac900961y.
[25]  Niu, S.; Qu, L.; Zhang, Q.; Lin, J. Fluorescence detection of thrombin using autocatalytic strand displacement cycle reaction and a dual-aptamer DNA sandwich assay. Anal. Biochem. 2012, 421, 362–367.
[26]  Wang, L.; Li, L.; Xu, Y.; Cheng, G.; He, P.; Fang, Y. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation. Talanta 2009, 79, 557–561, doi:10.1016/j.talanta.2009.05.034.
[27]  Sosic, A.; Meneghello, A.; Cretaio, E.; Gatto, B. Human thrombin detection through a sandwich aptamer microarray: Interaction analysis in solution and in solid phase. Sensors 2011, 11, 9426–9441, doi:10.3390/s111009426.
[28]  Yang, C.; Wang, Y.; Marty, J.-L.; Yang, X. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens. Bioelectron. 2011, 26, 2724–2727.
[29]  Sahni, A.; Francis, C.W. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 2000, 96, 3772–3778.
[30]  Keyt, B.A.; Berleau, L.T.; Nguyen, H.V.; Chen, H.; Heinsohn, H.; Vandlen, R.; Ferrara, N. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 1996, 271, 7788–7795.
[31]  Hornbeck, P.; Winston, S.E.; Fuller, S.A. Enzyme-linked immunosorbent assays (ELISA). In Current Protocols in Molecular Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
[32]  Lim, Y.C.; Kouzani, A.Z.; Duan, W. Aptasensors: A review. J. Biomed. Nanotechnol. 2010, 6, 93–105, doi:10.1166/jbn.2010.1103.
[33]  Zeng, X.; Shen, Z.; Mernaugh, R. Recombinant antibodies and their use in biosensors. Anal. Bioanal. Chem. 2012, 402, 3027–3038.
[34]  Huang, D.W.; Niu, C.G.; Qin, P.Z.; Ruan, M.; Zeng, G.M. Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection. Talanta 2010, 83, 185–189, doi:10.1016/j.talanta.2010.09.004.
[35]  Chen, Y.; Nakamoto, K.; Niwa, O.; Corn, R.M. On-chip synthesis of RNA aptamer microarrays for multiplexed protein biosensing with SPR imaging measurements. Langmuir 2012, 28, 8281–8285.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133