全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Microarrays  2012 

Quality Visualization of Microarray Datasets Using Circos

DOI: 10.3390/microarrays1020084

Keywords: circos, yaqcaffy, quality monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform ( i.e., GPL 96, GPL570 and GPL571). Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

References

[1]  Bachtiary, B.; Boutros, P.C.; Pintilie, M.; Shi, W.; Bastianutto, C.; Li, J.-H.; Schwock, J.; Zhang, W.; Penn, L.Z.; Jurisica, I.; et al. Gene expression profiling in cervical cancer: An exploration of intratumor heterogeneity. Clin. Cancer Res. 2006, 12, 5632–5640.
[2]  Shi, L.; Reid, L.H.; Jones, W.D.; Shippy, R.; Warrington, J.A.; Baker, S.C.; Collins, P.J.; de Longueville, F.; Kawasaki, E.S.; Lee, K.Y.; et al. The Microarray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 2006, 24, 1151–1161, doi:10.1038/nbt1239.
[3]  Shi, L.; Campbell, G.; Jones, W.D.; Campagne, F.; Wen, Z.; Walker, S.J.; Su, Z.; Chu, T.M.; Goodsaid, F.M.; Pusztai, L.; et al. The Microarray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 2010, 28, 827–838, doi:10.1038/nbt.1665.
[4]  Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, doi:10.1186/gb-2004-5-10-r80.
[5]  McClure, J.; Wit, E. Post-normalization quality assessment visualization of microarray data. Comp. Funct. Genomics 2003, 4, 460–467, doi:10.1002/cfg.317.
[6]  Yang, Y.H.; Dudoit, S.; Luu, P.; Lin, D.M.; Peng, V.; Ngai, J.; Speed, T.P. Normalization for cdna microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, doi:10.1093/nar/30.4.e15.
[7]  Edwards, D. Non-linear normalization and background correction in one-channel cdna microarray studies. Bioinformatics 2003, 19, 825–833, doi:10.1093/bioinformatics/btg083.
[8]  Xiong, H.; Zhang, D.; Martyniuk, C.J.; Trudeau, V.L.; Xia, X. Using generalized procrustes analysis (gpa) for normalization of cdna microarray data. BMC Bioinformatics 2008, doi:10.1186/ 1471-2105-9-25.
[9]  Wu, Y.; Yan, L.; Liu, H.; Sun, H.; Xie, H. A new outlier removal approach for cdna microarray normalization. BioTechniques 2009, 47.
[10]  Wu, Z.; Aryee, M.J. Subset quantile normalization using negative control features. J. Comput. Biol. 2010, 17, 1385–1395, doi:10.1089/cmb.2010.0049.
[11]  Geller, S.C.; Gregg, J.P.; Hagerman, P.; Rocke, D.M. Transformation and normalization of oligonucleotide microarray data. Bioinformatics 2003, 19, 1817–1823, doi:10.1093/bioinformatics/btg245.
[12]  Calza, S.; Valentini, D.; Pawitan, Y. Normalization of oligonucleotide arrays based on the least-variant set of genes. BMC Bioinforma. 2008, doi:10.1186/1471-2105-9-140.
[13]  Carvalho, B.; Bengtsson, H.; Speed, T.P.; Irizarry, R.A. Exploration, normalization, and genotype calls of high-density oligonucleotide snp array data. Biostatistics 2007, 8, 485–499.
[14]  Rigaill, G.; Hupé, P.; Almeida, A.; Rosa, P.L.; Meyniel, J.-P.; Decraene, C.; Barillot, E. Italics: An algorithm for normalization and DNA copy number calling for affymetrix snp arrays. Bioinformatics 2008, 24, 768–774, doi:10.1093/bioinformatics/btn048.
[15]  Zeller, G.; Henz, S.R.; Laubinger, S.; Weigel, D.; R?tsch, G. Transcript normalization and segmentation of tiling array data. Pac. Symp. Biocomput. 2008, 538, 527–538.
[16]  Autio, R.; Kilpinen, S.; Saarela, M.; Kallioniemi, O.; Hautaniemi, S.; Astola, J. Comparison of affymetrix data normalization methods using 6,926 experiments across five array generations. BMC Bioinforma. 2009, doi:10.1186/1471-2105-10-S1-S24.
[17]  Barbacioru, C.C.; Wang, Y.; Canales, R.D.; Sun, Y.A.; Keys, D.N.; Chan, F.; Poulter, K.A.; Samaha, R.R. Effect of various normalization methods on applied biosystems expression array system data. BMC Bioinforma. 2006, doi:10.1186/1471-2105-7-533.
[18]  Irizarry, R.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264, doi:10.1093/biostatistics/4.2.249.
[19]  Wu, W.; Dave, N.; Tseng, G.C.; Richards, T.; Xing, E.P.; Kaminski, N. Comparison of normalization methods for codelink bioarray data. BMC Bioinforma. 2005, doi:10.1186/1471-2105-6-309.
[20]  Du, P.; Kibbe, W.A.; Lin, S.M. Lumi: A pipeline for processing illumina microarray. Bioinformatics 2008, 24, 1547–1548, doi:10.1093/bioinformatics/btn224.
[21]  Zahurak, M.; Parmigiani, G.; Yu, W.; Scharpf, R.B.; Berman, D.; Schaeffer, E.; Shabbeer, S.; Cope, L. Pre-processing agilent microarray data. BMC Bioinforma. 2007, doi:10.1186/1471-2105-8-142.
[22]  Kerr, K.F. Extended analysis of benchmark datasets for agilent two-color microarrays. BMC Bioinforma. 2007, doi:10.1186/1471-2105-8-371.
[23]  Barrett, T.; Suzek, T.O.; Troup, D.B.; Wilhite, S.E.; Ngau, W.C.; Ledoux, P.; Rudnev, D.; Lash, A.E.; Fujibuchi, W.; Edgar, R. NCBI GEO: Mining millions of expression profiles—Database and tools. Nucleic Acids Res. 2005, 33, D562–D566.
[24]  Chang, E.C.; Charn, T.H.; Park, S.H.; Helferich, W.G.; Komm, B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen receptors alpha and beta as determinants of gene expression: Influence of ligand, dose, and chromatin binding. Mol. Endocrinol. 2008, 22, 1032–1043, doi:10.1210/me.2007-0356.
[25]  Lutter, D.; Ugocsai, P.; Grandl, M.; Orso, E.; Theis, F.; Lang, E.W.; Schmitz, G. Analyzing m-csf dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis. BMC Bioinformatics 2008, doi:10.1186/1471-2105-9-100.
[26]  Aoyagi, K.; Minashi, K.; Igaki, H.; Tachimori, Y.; Nishimura, T.; Hokamura, N.; Ashida, A.; Daiko, H.; Ochiai, A.; Muto, M.; et al. Artificially induced epithelial-mesenchymal transition in surgical subjects: Its implications in clinical and basic cancer research. PLoS One 2011, 6, e18196.
[27]  Sean, D.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and bioconductor. Bioinformatics 2007, 23, 1846–1847, doi:10.1093/bioinformatics/btm254.
[28]  Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. Affy—Analysis of affymetrix genechip data at the probe level. Bioinformatics 2004, 20, 307–315, doi:10.1093/bioinformatics/btg405.
[29]  Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. Pcamethods—A bioconductor package providing pca methods for incomplete data. Bioinformatics 2007, 23, 1164–1167.
[30]  Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645, doi:10.1101/gr.092759.109.
[31]  Ritchie, M.E.; Dunning, M.J.; Smith, M.L.; Shi, W.; Lynch, A.G. BeadArray expression analysis using bioconductor. PLoS Comput. Biol. 2011, 7, e1002276, doi:10.1371/journal.pcbi.1002276.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133