Nacre, or mother of pearl, is composed of aragonite tablets and is produced by some mollusks. Because of the highly organized internal structure, chemical complexity, mechanical properties and optical effects of nacre, its formation is among the best-studied examples of calcium carbonate biomineralization . The pearl oyster Pinctada margaritifera is harvested in French Polynesia for pearl farming. The quality of the pearl depends on the quality of the nacre on its surface and its iridescent colors are affected by the thickness of the layers. Here we report on an experimental study conducted to influence the shape and the thickness of nacre tablets by keeping pearl oysters at four different depths (7, 20, 30 and 39 m) for one week. Scanning electron microscopy was used to measure the thickness of the nacre tablets and to analyze their final shape. The shape of the tablets changed from hexagonal to rhomboid at a depth of 39 m. The change in shape led to a change in size. The thickness of the tablets was reduced by between 16 and 30% on average. We also measured the oxygen isotopic composition using Secondary Ion Mass Spectrometry. In this study, we demonstrated that depth can modify the size, shape and thickness of nacre tablets, but not the d 18O. This environmental modification is important for the biomineralization of the shell of the pearl oyster Pinctada margaritifera.
References
[1]
Hurwit, K.N.; Shigley, J.E.; Liu, Y. Iridescent colour of a shell mollusc Pinctada margaritifera caused by diffraction. Int. J. Optics 1999, 4(5), 177–182.
[2]
Delesalle, B.; Charpy, L.; Le Borgne, R.; Adessi, L.; Legendre, L.; Sakka, A.; Pouvreau, S.; Niquil, N. Trophic web and carrying in a pearl oyster farming lagoon (Takapoto, French Polynesia). Aquat. Living Resour. 2001, 14, 165–174, doi:10.1016/S0990-7440(01)01114-7.
[3]
Prasil, V.; Pouvreau, S. Growth of the blacklip pearl oyster, Pinctada margaritifera, at nine culture sites of French Polynesia: synthesis of several sampling designs conducted between 1994 and 1999. Aquat. Living Resour 2001, 14(3), 155–163, doi:10.1016/S0990-7440(01)01120-2.
[4]
Wada, K. Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralization 1972, 6, 141–159.
[5]
Urey, H.C. Thermodynamic properties of isotopic substances. J. Chem. Soc. 1947, 562–579, doi:10.1039/jr9470000562.
[6]
Urey, H.C.; Lowenstam, H.A.; Buchsbaum, R.; Epstein, S. Carbonate-water isotopic temperature scale. Bull. Geol. Soc. Amer. 1951, 62, 417–426, doi:10.1130/0016-7606(1951)62[417:CITS]2.0.CO;2.
McKinney, C.R.; Epstein, S.; Lowenstam, H.A.; Urey, H.C. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States. Bull. Geol. Soc. Amer. 1951, 62, 399–416, doi:10.1130/0016-7606(1951)62[399:MOPATO]2.0.CO;2.
[9]
Bourrat, X.; Naslain, R.; Smith, D.C.; Mascarel, G.; Couté, A.; Lopez, E.; Rousseau, M. Sheet nacre growth mechanism: A Voronoi model. J. Structur. Biol 2005, 149, 149–157, doi:10.1016/j.jsb.2004.09.005.
[10]
Dove, P.M.; Weiner, S. An overview of biomineralization processes and the problem of the vital effec. In Biomineralization; Eds., Weiner, S., de Yoreo, J.J., Dove, P.M., Eds.; The Mineralogical Society of America: Washington, DC, USA, 2003.
[11]
Ku, T.L.; Grossman, E.L. Oxygen and carbon isotope fractionation in biogenic aragonite—Temperature effects. Chem. Geol. 1986, 59, 59–74, doi:10.1016/0168-9622(86)90057-6.
[12]
Dettman, D.L.; Sch?ne, B.R.; Flessa, K.W.; Goodwin, D.H. Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: Implication for paleoenvironmental analysis. Palaios 2001, 16, 387–398.
[13]
Lopez, E.; Angellier, M.; Bourrat, X.; Gèze, M.; Meibom, A.; Rousseau, M. Dynamics of sheet nacre formation in bivalves. J. Structur. Biol. 2009, 165, 190–195, doi:10.1016/j.jsb.2008.11.011.
[14]
Wiederhold, M.L.; Pedrozo, H.A. Effects of hypergravity on statocyst development in embryonic Aplysia californica. Hear. Res. 1994, 79, 137–146, doi:10.1016/0378-5955(94)90135-X. 7806476
[15]
Rahmann, H.; Kappel, T.; Anken, R.H. Morphometry of fish inner ear otoliths after development at 3g hypergravity. Acta Oto-laryngol. 1998, 118, 534–539, doi:10.1080/00016489850154685.
[16]
Becker, W.; Reelsen, O.; Marxen, J. Embryonic development of the freshwater snail Biomphalaria glabrata under μg conditions (STS-89 mission). J. Gravit. Physio. 2001, 8, 29–36.
[17]
Rollion-Bard, C.; Blamart, D.; Cuif, J.-P.; Dauphin, Y. In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: Re-examination of the current geochemical models of biomineralization. Geochim. Cosmochim. Acta 2010, 74, 1338–1349, doi:10.1016/j.gca.2009.11.011.
[18]
Champenois, M.; Mangin, M.; Rollion-Bard, C. Development and application of oxygen and carbon isotopic measurements of biogenic carbonates by ion microprobe. Geostand. Geoanal. Res. 2007, 31, 39–50, doi:10.1111/j.1751-908X.2007.00834.x.