Layered Growth and Crystallization in Calcareous Biominerals: Impact of Structural and Chemical Evidence on Two Major Concepts in Invertebrate Biomineralization Studies
In several recent models of invertebrate skeletogenesis, Ca-carbonate crystallization occurs within a liquid-filled chamber. No explanation is given neither for the simultaneous occurrence of distinct polymorphs of Ca-carbonate within these liquid volumes, nor for the spatial arrangement of the mineral units which are always organized in species-specific structural sequences. Results of a series of physical characterizations applied to reference skeletal materials reveal the inadequacy of this liquid-filled chamber model to account for structural and chemical properties of the shell building units. Simultaneously, these data provide convergent pieces of evidence for a specific mode of crystallization developed throughout various invertebrate phyla, supporting the hypothesized “common strategy” based on a multi-scaled control exerted on formation of their calcareous hard parts.
References
[1]
Bowerbank, J.S. On the structure of the shells of Molluscous and Conchiferous Animals. Trans. Microsc. Soc. London 1844, 1, 123–154, doi:10.1111/j.1365-2818.1844.tb04627.x.
[2]
Carpenter, W. On the microscopic structure of shells: Part I. Br. Assoc. Adv. Sci. 1845, 14, 1–24.
[3]
Carpenter, W. On the microscopic structure of shells: Part II. Br. Assoc. Adv. Sci. 1847, 17, 93–134.
[4]
Schmidt, W. Die Bausteine des Tierkorpers in Polarisiertem Lichte ; Cohen Verlag: Bonn, Germany, 1924.
[5]
Boggild, O. The shell structure of the Mollusks. . Skrifter Naturvidenskabelig Math. Afd. Raeke 9 1930, 9, 231–326.
[6]
Ogilvie, M. Microscopic and systematic study of the madreporarian types of corals. Phil. Trans. R. Soc. Lond. B 1895, 59, 9–18.
[7]
Ogilvie, M. Microscopic and systematic study of the madreporarian types of corals. Phil. Trans. R. Soc. Lond. B 1896, 187, 83–345, doi:10.1098/rstb.1896.0003.
[8]
Durand, I.; Galgani, I.; Furla, P. Sources and mechanisms or inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 2000, 203, 351–371.
[9]
Lutringer, A.; Curry, W.B.; Boyle, E.A.; Adkins, J.F. Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim. Cosmochim. Acta 2003, 67, 1129–1143, doi:10.1016/S0016-7037(02)01203-6.
[10]
Petit, H. Recherches sur des séquences d’événements périostracaux lors de l’élaboration de la coquille d’ Amblema plicata Conrad, 1834., Laboratoire de Zoologie, Université de Bretagne occidentale, Brest, France, 1978.
[11]
Petit, H.; Saleuddin, A.S.M. The mode of formation and the structure of the periostracum. In The Mollusca; Eds., Wilbur, K.M., Saleuddin, A.S.M., Eds.; Academic Press: New York, NY, USA, 1983.
[12]
Volkmer, D. Biologically inspired crystallization of calcium carbonate beneath monolayer: A critical overview. In Handbook of Biomineralization; Eds., Baeuerlein, E., Behrens, P., Eds.; Wiley: New York, NY, USA, 2007.
Dove, P. The rise of skeletal biominerals. Elements 2010, 6, 37–42, doi:10.2113/gselements.6.1.37.
[15]
Allemand, D.; Erez, J.; Venn, A.; Zoccola, D.; Segonds, N.; Tambutté, S.; Tambutté, E. Calcein labelling and electrophysiology: Insight on coral tissue permeability and calcification. Proc. R. Soc. Lond. B 2011, doi:10.1098/rspb.2011.0733.
[16]
Weiner, S. Mollusk shell formation: Isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus . Biochemistry 1983, 22, 4139–4145, doi:10.1021/bi00286a023.
[17]
Shaye, E.; Moradian, J.; Addadi, L. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc. Natl. Acad. Sci. USA 1987, 84, 2732–2736, doi:10.1073/pnas.84.9.2732. 16593827
[18]
Hood, D.W.; Kitano, Y. The influence of organic material on polymorphic crystallization of calcium carbonate. Geochim. Cosmochim. Acta 1965, 29, 29–41, doi:10.1016/0016-7037(65)90075-X.
[19]
Dove, P.M.; De Yoreo, J.J. Shaping crystals with biomolecules. Science 2004, 306, 1301–1302, doi:10.1126/science.1100889. 15550649
[20]
Weiner, S.; Lowenstam, H.A. On Biomineralization; Oxford University Press: Oxford, UK, 1989.
[21]
Livingston, B.T.; Kilian, C.E.; Wilt, E.H. Development of calcareous skeletal elements in invertebrates. Differenciation 2003, 71, 237–250, doi:10.1046/j.1432-0436.2003.7104501.x.
[22]
Ettensohn, C.A.; Wilt, E.H. The morphogenesis and biomineralization of the sea urchin larval skeleton. In Handbook of Biomineralization; Baeuerlein, Eds., Behrens, P., Eds.; Wiley: New York, NY, USA, 2007.
[23]
Lowenstam, H.A. Minerals formed by organisms. Science 1981, 211, 1126–1131, doi:10.1126/science.7008198. 7008198
[24]
Veis, A. A window on biomineralization. Science 2005, 307, 1419–1420, doi:10.1126/science.1109440. 15746414
[25]
Ubukata, T. Nucleation and growth of crystals and formation of cellular pattern of prismatic shell microstructure in bivalve molluscs. Forma 2001, 16, 141–154.
[26]
Grégoire, C. Sur la structure submicroscopique de la conchyoline associée aux prismes de coquilles de mollusques. Bul. Inst. R. Sci. Nat. Belgique 1961, 37(3), 1–34.
[27]
Gaspard, D.; Denis, A.; Cuif, J.P. Recherche d’une méthode d’analyse ultrastructurale des tests carbonatés d’Invertébrés. Bul. Soc. Géol. France 1981, 9, 525–534.
[28]
Raguideau, A.; Denis, A.; Dauphin, Y.; Cuif, J.P. Etude des caractéristiques de la phase minérale dans les structures prismatiques du test de quelques Mollusques. Bull. Mus. Natl. Hist. Nat. 1983, 5, 679–717.
[29]
Dauphin, Y. Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid Bivalves: Pinna nobilis and Pinctada margaritifera. J. Biol. Chem. 2003, 278, 15168–15177, doi:10.1074/jbc.M204375200. 12576478
[30]
Cuif, J.P.; Dauphin, Y.; Sorauf, J.E. Biominerals and Fossils through Time; Cambridge University Press: Cambridge, UK, 2011.
[31]
Susini, J.; Salomé, M.; Doucet, J.; Cuif, J.P.; Dauphin, Y. In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur edge. Mar. Biol. 2003, 142, 299–304.
[32]
Rodrigez-Navarro, A.B.; Ramirez-Rico, J.; Esteban-Delgado, F.J.; Checa, A.G. Crystallographic reorganization of the calcitic prismatic layer of oysters. J. Struct. Biol. 2009, 167, 261–270, doi:10.1016/j.jsb.2009.06.009. 19540344
Cotte, M.; Cuif, J.P.; Farre, B.; Laprévote, O.; Meibom, A.; Salomé, M.; Williams, C.T.; Brunelle, A.; Dauphin, Y. A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (Mollusca, Bivalvia) . Micros. Microanal. 2010, 16, 91–98.
[35]
Ortlieb, L.; Dauphin, Y.; Cuif, J.P.; Ball, A.D.; Guzmann, N. Subdaily growth patterns and organomineral nanostructure of the growth layers in the calcitic prisms of the shell of Concholepas concholepas Bruguière, 1789 (Gastropoda, Muricidae). Micros.Microanal. 2007, 13, 397–403.
[36]
Bryan, W.H.; Hill, D. Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc. R. Soc. Qld. 1941, 9, 78–91.
[37]
Tillier, S.; Tillier, A.; Perrin, C.; Lecointre, G.; Cuif, J.P. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: A dual approach for a new taxonomic framework. Zool. Scr. 2003, 32, 459–473, doi:10.1046/j.1463-6409.2003.00133.x.
[38]
Dauphin, Y.; Cuif, J.P. The environment recording unit in coral skeletons: A synthesis of structural and chemical evidences for a biochemically driven, stepping growth process in coral fibers. Biogeosciences 2005, 2, 61–73, doi:10.5194/bg-2-61-2005.
[39]
Dauphin, Y.; Cuif, J.P. Occurrence of mineralization disturbances in nacreous layers of cultivated pearls produced by Pinctada margaritifera var. cumingi from French Polynesia. Comparison with reported shell alterations. Aquat. Liv. Res 1996, 9, 187–193, doi:10.1051/alr:1996022.
[40]
Williams, C.T.; Susini, J.; Salomé, M.; Meibom, A.; Cuif, J.P.; Cotte, M.; Ball, A.D.; Dauphin, Y. Structure and composition of the nacre-prism transition in the shell of Pinctada margaritifera (Mollusca, Bivalvia). Anal. Bioanal. Chem. 2008, 390, 1659–1169, doi:10.1007/s00216-008-1860-z. 18246463
[41]
Erben, H.K. Ueber die bildung und das wachstum von perlmutt. Biomineralization 1972, 4, 16–36.
[42]
Mutvei, H. On the internal structures of the nacreous tablets in molluscan shells. Scan. Elect. Micros. 1979, II, 451–462.
[43]
Weiner, S.; Addadi, L.; Gotliv, B.A.; Nudelman, F. Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 2006, 153, 176–187, doi:10.1016/j.jsb.2005.09.009. 16413789
[44]
Dauphin, Y.; Cuif, J.P. Microstructural and physico-chemical characterizations of the “centers of calcification” in the septa of some recent Scleractinian corals. Pal?ont. Zeit. 1998, 72, 257–270.
[45]
Watabe, N.; Vandermeulen, J.H. Studies on reef corals: I. Skeleton formation by newly settled planula larva of Pocillopora damicornis. Mar. Biol. 1973, 23, 47–57, doi:10.1007/BF00394111.
[46]
Susini, J.; Salomé, M.; Doucet, J.; Dauphin, Y.; Cuif, J.P. XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim. Cosmochim. Acta 2003, 67, 75–83, doi:10.1016/S0016-7037(02)01041-4.
[47]
Lutringer, A.; Curry, W.B.; Boyle, E.A.; Adkins, J.F. Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim. Cosmochim. Acta 2003, 67, 1129–1143, doi:10.1016/S0016-7037(02)01203-6.
[48]
Rollion-Bard, C.; Juillet-Leclerc, A.; Cuif, J.P.; Blamart, D. O-stable isotopes distribution in deep-sea corals from SIMS measurements. In. In Proceedings of the 27th General Assembly of the European Geophysical Society, Nice, France, 21–26 April 2002.
[49]
Cuif, J.P.; Blamart, D.; Rollion-Bard, C. Juillet-leclerc microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 2003, 22, 405–415, doi:10.1007/s00338-003-0347-9.
[50]
Dubar, R.B.; Watanabe, T.; Dauphin, Y.; Juillet-Leclerc, A.; Constantz, B.; Hillion, F.; Cuif, J.P.; Meibom, A. Distribution of magnesium in coral skeleton. Geoph. Res. Lett. 2004, 31, L23306:1–L23306:4.
[51]
Marshall, A.T.; Clode, P.L. Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell , 2002 34, 187–198. 14729449
[52]
Crenshaw, M.A. Mechanisms of shell formation and dissolution. In Skeletal Growth of Aquatic Organisms; Eds., Lutz, R.A., Rhoads, D.C., Eds.; Plenum Press: New York, NY, USA, 1980.
[53]
Wilbur, K.M. Shell Formation and Regeneration. In Physiology of Mollusca; Eds., Yonge, C.M., Wilbur, K.M., Eds.; Academic Press: New York, NY, USA and London UK, 1964.
[54]
Kessel, E. über die Schale von Viviparus viviparus L. and Viviparus fasciatus Müll. Ein Beitr?ge zum Strukturproblem der Gastropodenschale. Z. morphol. ?kol Tiere 1933, 27, 129–198, doi:10.1007/BF00406042.
[55]
Johnston, I.S. Aspects of the structure of a skeletal organic matrix and the process of skeletogenesis in the reef-coral Pocillopora damicornis. In 3rd International Coral Reef Symposium; Pennsylvania State University: University Park, PA, USA, 1977.
[56]
Johnston, I.S. The ultrastructure of skeletogenesis in hermatypic corals. Int. Rev. Cytol. 1980, 67, 171–214.
[57]
Stucky, G.D.; Ramli, E.; Hansma, P.K.; Friedbacher, G. Imaging powders with the atomic force microscope: From biominerals to commercial materials. Science 1991, 253, 1261–1262, doi:10.1126/science.253.5025.1261. 17831444
[58]
Crenshaw, M. The soluble matrix from Mercenaria mercenaria shell. Biomineralization 1972, 6, 6–11.
[59]
Nouet, J.; Farre, B.; Dauphin, Y.; Cuif, J.P.; Baronnet, A. Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometer ranges. Miner. Mag. 2008, 72, 617–626, doi:10.1180/minmag.2008.072.2.617.
[60]
Bourne, G.C. Studies on the structure and formation of the calcareous skeleton of the Anthozoa. Quart. J. Microsc. Sci. 1899, 41, 499–547.
[61]
Goreau, T. Histochemistry of mucopolysaccharide-like substances and alkaline phosphatase in Madreporaria. Nature 4518, 1029–1030.
[62]
O’Neil, J.R.; Lécuyer, C. Composition isotopique (H, O) de l’eau en inclusion dans les carbonates biogéniques. Bull. Soc. Géol. Fr. 1994, 165, 573–581.
[63]
Jegoudez, Y.; Berthet, P.; Dauphin, Y.; Cuif, J.P. Associated water and organic compounds in coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochem. Geophys. Geosyst. 2004, 5, Q11011:1–Q11011:9.
[64]
Addadi, L; Weiner, S.; Aizenberg, J.; Beniash, E. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. Lond. B 1997, 264, 461–465, doi:10.1098/rspb.1997.0066.
[65]
Zolotoyabko, O.E.; Berner, A.; Caspie, N.; Quintana, J.P.; Pokroy, B. Anisotropic lattice distorsions in biogenic aragonite. Nature 2004, 3, 900–902.
[66]
Nakahara, H.; Bevelander, G. Compartment and envelope formation in the process of biological mineralization. In The Mechanisms of Biomineralization in Animals and Plants; Eds., Watabe, N., Omori, M., Eds.; Tokai University Press: Kanagawa, Japan, 1980.
[67]
Wada, K. Crystal growth of molluscan shells. Bull. Natl. Pearl Res. Lab. 1961, 36, 703–828.
[68]
C?lfen, H. Non classical crystallization. In Biomineralization from Paleontology to Material Sciences; Eds., Fernandez, M.S., Arias, J.L., Eds.; Editorial Universitaria Santiago: Santiago, Chile, 2007; pp. 515–526.
[69]
Antonietti, M.; C?lfen, H. Mesocrystals and Nonclassical Crystallization; Wiley: New York, NY, USA, 2008.
[70]
Popov, L.; Holmer, L.E.; Brunton, C.; Howard, C.; Carlson, S.J.; Williams, A. A supra-ordinal classification of the Brachiopoda. Phil. Trans. R. Soc. Lond. B 1996, 351, 1171–1193, doi:10.1098/rstb.1996.0101.
[71]
Cuif, J.P.; Perez-Huerta, A.; Chung, P.; Dauphin, Y.; Cusack, M. Multiscale structure of calcite fibres of the shell of the brachiopod Terebratulina retusa. J. Struct. Biol. 2008, 164, 96–100, doi:10.1016/j.jsb.2008.06.010. 18634885
[72]
Smout, A.H. Reclassification of the Rotaliidae (Foraminifera). J. Wash. Acad. Sci. 1955, 45, 201–210.
[73]
Dubois, P.; Cusack, M.; Leloup, T.; Zhu, W.; Compère, P.; Pérez-Huerta, A.; Moureaux, C. Structure, composition and mechanical relations to function in sea urchin spine. J. Struct. Biol. 2010, 170, 41–49, doi:10.1016/j.jsb.2010.01.003. 20064619
[74]
Cai, W.; Zhu, J.; Sun, Z.; Zhang, J.; Zhang, F. In-situ raman spectral mapping study on the microscale fibers in blue coral (Heliopora coerulea) skeletons. Anal. Chem. 2011, 83, 7870–7875, doi:10.1021/ac2017663. 21882838
[75]
Howard, L.; Baronnet, A.; Nouet, J. Crystallization in organo-mineral micro-domains in the crossed-lamellar layer of Nerita undata (Gastropoda, Neritopsina) . Micron 2011, 43, 456–462. 22178222