全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Symmetric Solutions of a Nonlinear Elliptic Problem with Neumann Boundary Condition

DOI: 10.4236/am.2012.311233, PP. 1686-1688

Keywords: Nonlinear Boundary Value Problems, Elliptic

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show a result of symmetry for a big class of problems with condition of Neumann on the boundary in the case one dimensional. We use the method of reflection of Alexandrov and we show one application of this method and the maximum principle for elliptic operators in problems with conditions of Neumann. Some results of symmetry for elliptic problems with condition of Neumann on the boundary may be extended to elliptic operators more general than the Laplacian.

References

[1]  A. D. Alexandrov, “Uniqueness Theorems for Surfaces in the Large,” Vestnik Leningrad University: Mathematics, Vol. 13, No. 19, 1958, pp. 5-8.
[2]  J. Serrin, “A Symetry Problem in Potential Theory,” Archive for Rational Mechanics and Analysis, Vol. 43, No. 4, 1971, pp. 304-318. doi:10.1007/BF00250468
[3]  B. Gidas, W.-M. Ni and L. Nirenberg, “Symmetry and Related Properties via Maximum Principle,” Communications in Mathematical Physics, Vol. 68, No. 3, 1979, pp. 209-243. doi:10.1007/BF01221125
[4]  B. Gidas, W.-M. Ni and L. Nirenberg, “Symmetry of Positive Solutions of Nonlinear Elliptic Equations in ,” In: Mathematical Analysis and Applications, Part A, Academic Press, New York, 1981, pp. 369-402.
[5]  L. Cafarelli, B. Gidas and J. Spruck, “Asymptotic Symmetry and Local Behavior of Semilinear Elliptic with Critical Sobolev Growth,” Communications on Pure and Applied Mathematics, Vol. 42, No. 3, 1989, pp. 271-297. doi:10.1002/cpa.3160420304
[6]  H. Berestycki and L. Nirenberg, “On the Method of Moving Planes and the Sliding Method,” Bulletin of the Brazilian Mathematical Society, Vol. 22, No. 1, 1991, pp. 1-37.
[7]  F. John, “Partial Differential Equations,” Springer-Verlag, New York, 1982.
[8]  M. Protter and H. Weinberger, “Maximum Principle in Differential Equations,” Springer-Verlag, New York, 1984. doi:10.1007/978-1-4612-5282-5
[9]  D. Gilbarg and N. Trudinger, “Elliptic Partial Differential Equations of Second Order,” Springer-Verlag, Berlin, Heidelberg, New York, 1977.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133