A functional biodiversity microarray (EcoChip) prototype has been developed to facilitate the analysis of fungal communities in environmental samples with broad functional and phylogenetic coverage and to enable the incorporation of nucleic acid sequence data as they become available from large-scale (next generation) sequencing projects. A dual probe set (DPS) was designed to detect a) functional enzyme transcripts at conserved protein sites and b) phylogenetic barcoding transcripts at ITS regions present in precursor rRNA. Deviating from the concept of GeoChip-type microarrays, the presented EcoChip microarray phylogenetic information was obtained using a dedicated set of barcoding microarray probes, whereas functional gene expression was analyzed by conserved domain-specific probes. By unlinking these two target groups, the shortage of broad sequence information of functional enzyme-coding genes in environmental communities became less important. The novel EcoChip microarray could be successfully applied to identify specific degradation activities in environmental samples at considerably high phylogenetic resolution. Reproducible and unbiased microarray signals could be obtained with chemically labeled total RNA preparations, thus avoiding the use of enzymatic labeling steps. ITS precursor rRNA was detected for the first time in a microarray experiment, which confirms the applicability of the EcoChip concept to selectively quantify the transcriptionally active part of fungal communities at high phylogenetic resolution. In addition, the chosen microarray platform facilitates the conducting of experiments with high sample throughput in almost any molecular biology laboratory.
References
[1]
Ji, H.; Shendure, J. Next-generation DNA sequencing. Nat. Biotechnol.?2008, 26, 1135–1145, doi:10.1038/nbt1486. 18846087
[2]
Maier, W.; Unterseher, M.; Nilsson, H.; Begerow, D. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl. Microbiol. Biotechnol.?2010, 87, 99–108, doi:10.1007/s00253-010-2585-4. 20405123
[3]
Yaege, C.; Mattox, J.D.; Jones, K.L.; Jumpponen, A. Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol. Ecol.?2010, 19, 41–53, doi:10.1111/j.1365-294X.2009.04483.x. 20331769
[4]
Forney, L.J.; Solheim, B.; Bunge, J.; Ravel, J.; Foster, J.; Abdo, Z.; Schütte, U.M.E. Bacterial diversity in a glacier foreland of the high Arctic. Mol. Ecol.?2010, 19, 54–66, doi:10.1111/j.1365-294X.2009.04479.x. 20331770
[5]
Richards, T.A.; Breiner, H.-W.; Jones, M.D.M.; Christen, R.; Nebel, M.; Bass, D.; Stoeck, T. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol.?2010, 19, 21–31, doi:10.1111/j.1365-294X.2009.04480.x. 20331767
[6]
Meyer, A.; Kuraku, S.; Boekhoff, S.; Jones, J.C.; Gunter, H.M.; Fan, S.; Elmer, K.R. Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol. Ecol.?2010, 19, 197–211. 20331780
[7]
Mackenzie, S.; Bronte, C.R.; Murphy, C.; Johnson, R.; Roberts, S.; Simchick, C.; Goetz, G.; Sitar, S.; Rosauer, D.; Goetz, F. A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush). Mol. Ecol.?2010, 19, 176–196, doi:10.1111/j.1365-294X.2009.04481.x. 20331779
[8]
Harting, J.R.; Zhang, D.; Kua, C.-S.; Cannon, C.H. Assembly free comparative genomics of short-read sequence data discovers the needles in the haystack. Mol. Ecol.?2010, 19, 147–161, doi:10.1111/j.1365-294X.2009.04484.x. 20331777
[9]
Cronn, R.; Liston, A.; Dick, C.; Buenrostro, J.; Parks, M.; Syring, J.; Whittall, J.B. Finding a (pine) needle in a haystack: Chloroplast genome sequence divergence in rare and widespread pines. Mol. Ecol.?2010, 19, 100–114, doi:10.1111/j.1365-294X.2009.04474.x. 20331774
[10]
Marmeisse, R.; Fraissinet-Tachet, L.; Luis, P.; Dequin, S.; Galeote, V.; Haider, M.Z.; Zimmermann, S.; Vallon, L.; Damon, C. A novel fungal family of oligopeptide transporters identified by functional metatranscriptomics of soil eukaryotes. The ISME Journal?2011, 100–114, doi:10.1038/ismej.2011.67.
[11]
K?ljalg, U.; Chuyong, G.; Bechem, E.; Bahram, M.; Saar, I.; Sadam, A.; Jairus, T.; Abarenkov, K.; Nilsson, R.H.; Tedersoo, L. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol.?2010, 188, 291–301, doi:10.1111/j.1469-8137.2010.03373.x. 20636324
[12]
Martin, F.; Uroz, S.; Nilsson, R.H.; Morin, E.; Murat, C.; Reich, M.; Buée, M. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol.?2009, 184, 449–456, doi:10.1111/j.1469-8137.2009.03003.x. 19703112
[13]
Herndl, G.J.; Arrieta, J.M.; Neal, P.R.; Huse, S.M.; Mark Welch, D.; Huber, J.A.; Morrison, H.G.; Sogin, M.L. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc. Natl. Acad. Sci. U.S.A.?2006, 103, 12115–12120, doi:10.1073/pnas.0605127103. 16880384
[14]
Crielaard, W.; ten Cate, J.M.; Montijn, R.C.; Schuren, F.H.J.; van der Vossen, J.M.B.M.; Huse, S.M.; Zaura, E.; Keijser, B.J.F. Pyrosequencing analysis of the oral microflora of healthy adults. J. Dent. Res.?2008, 87, 1016–1020, doi:10.1177/154405910808701104. 18946007
[15]
Dickie, I.A. Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytol.?2010, 188, 916–918, doi:10.1111/j.1469-8137.2010.03473.x. 20854395
[16]
Samson, R.A.; Manoch, L.; Hywel-Jones, N.L.; Luangsa-Ard, J.J. On the relationships of Paecilomyces sect. Isarioidea species. Mycol. Res.?2005, 109, 581–589, doi:10.1017/S0953756205002741. 16018312
[17]
Panchal, G.; Spooner, B.M.; Roberts, P.J.; Bridge, P.D. On the unreliability of published DNA sequences. New Phytol.?2003, 160, 43–48, doi:10.1046/j.1469-8137.2003.00861.x.
[18]
Rambold, G.; Flessa, F.; Melcher, M.; Per?oh, D. First fungal community analyses of endophytic ascomycetes associated with Viscum album ssp. austriacum and its host Pinus sylvestris. Fungal Biol.?2010, 114, 585–596, doi:10.1016/j.funbio.2010.04.009. 20943170
[19]
Hallenberg, N.; Kristiansson, E.; Ryberg, M.; Bok, G.; Nilsson, R.H. A software pipeline for processing and identification of fungal ITS sequences. Source Code Biol. Med.?2009, 4, 1, doi:10.1186/1751-0473-4-1. 19146660
[20]
Amann, R.; Ludwig, W.; Schwippl, I.; Beisker, W.; Wallner, G.; Fuchs, B.M. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol.?1998, 64, 4973–4982. 9835591
[21]
Amann, R.; Ludwig, W.; Syutsubo, K.; Fuchs, B.M. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol.?2001, 67, 961–968, doi:10.1128/AEM.67.2.961-968.2001. 11157269
[22]
Amann, R.; Spencer-Martins, I.; Fonseca, A.; Fuchs, B.M.; Behrens, S.; Inácio, J. In situ accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-labeled oligonucleotide probes comprising the D1 and D2 domains. Appl. Environ. Microbiol.?2003, 69, 2899–2905, doi:10.1128/AEM.69.5.2899-2905.2003. 12732564
[23]
Schultz, J.; Wolf, M.; Müller, T.; Schwarz, R.; Ruderisch, B.; Schleicher, T.; Keller, A.; F?rster, F.; Koetschan, C. The ITS2 Database III—Sequences and structures for phylogeny. Nucleic Acids Res.?2010, 38, D275–9, doi:10.1093/nar/gkp966. 19920122
[24]
Gibas, C.J.; Weller, J.W.; Ratushna, V.G. Secondary structure in the target as a confounding factor in synthetic oligomer microarray design. BMC Genomics?2005, 6, 31, doi:10.1186/1471-2164-6-31. 15755320
[25]
Tsourkas, A.; Rhee, W.J.; Bao, G. Fluorescent probes for live-cell RNA detection. Annu. Rev. Biomed. Eng.?2009, 11, 25–47, doi:10.1146/annurev-bioeng-061008-124920. 19400712
Xia, X.-Q.; Wang, Y.P.; McClelland, M.; Muller-Tidow, C.; Ye, K.; Hoemme, C.; Long, F.; Porwollik, S.; Jia, Z.Y.; Xia, X.Q.; et al. Evaluating oligonucleotide properties for DNA microarray probe design. Nucleic Acids Res.?2010, 38, e121, doi:10.1093/nar/gkq039. 20236987
[28]
Horn, M.; Wagner, M.; Maixner, F.; Loy, A. probeBase—An online resource for rRNA-targeted oligonucleotide probes: New features 2007. Nucleic Acids Res.?2007, 35, D800–D804, doi:10.1093/nar/gkl856. 17099228
[29]
Abell, G.C.; Bae, J.-W.; Nam, Y.-D.; Kim, K.-H.; Abell, G.C.J.; Roh, S.W. Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol.?2010, 28, 291–299, doi:10.1016/j.tibtech.2010.03.001. 20381183
[30]
Meyer, M.R.; Schelter, J.M.; Ziman, M.; Lefkowitz, S.M.; Shannon, K.W.; Marton, M.J.; Burchard, J.; Jones, A.R.; Mao, M.; Hughes, T.R.; et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001, 19, 342–347. Nat. Biotechnol.?2001, 19, 342–347, doi:10.1038/86730. 11283592
[31]
National Center for Biotechnology Information. NCBI: Bethesda, MD, USA. 2011. Available online: http://www.ncbi.nlm.nih.gov (accessed on 26 October 2011).
Agilent Technologies eArray. Agilent Technologies: Santa Clara, CA, USA. 2011. Available online: http://earray.chem.agilent.com (accessed on 26 October 2011).
[34]
Gene Expression Omnibus. NCBI: Bethesda, MD, USA. 2011. Available online: http://www.ncbi.nlm.nih.gov/geo (accessed on 26 October 2011).
[35]
Rambold, G.; Buscot, F.; Theuerl, S.; Per?oh, D. Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J. Microbiol. Methods?2008, 75, 19–24, doi:10.1016/j.mimet.2008.04.009. 18573554
[36]
Miller, W.; Wagner, L.; Schwartz, S.; Zhang, Z. A greedy algorithm for aligning DNA sequences. J. Comput. Biol.?2000, 7, 203–214, doi:10.1089/10665270050081478. 10890397
[37]
Index Fungorum. CABI: Oxfordshire, UK. 2011. Available online: http://www.indexfungorum.org (accessed on 26 October 2011).
[38]
Standalone BLAST executables for Windows systems (version 2.0.10). NCBI: Bethesda, MD, USA, 2011; pp. 342–347. Available online: ftp://ftp.ncbi.nih.gov/blast/executables/release/2.0.10/blast-2.0.10-ia32-win32.exe , accessed on 26 October 2011.
[39]
RFLPtools: Tools to analyse RFLP data. Institute for Statistics and Mathematics: Wien, Austria. 2011. Available online: http://cran.r-project.org/web/packages/RFLPtools/index.html (accessed on 26 October 2011).