Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples.
References
[1]
Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467–470.
[2]
Bodrossy, L.; Sessitsch, A. Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol. 2004, 7(3), 245–254.
[3]
Call, D.R. Challenges and opportunities for pathogen detection using DNA microarrays. Crit. Rev. Microbiol. 2005, 31, 91–99, doi:10.1080/10408410590921736.
[4]
Kosti?, T.; Francois, P.; Bodrossy, L.; Schrenzel, J. Oligonucleotide and DNA microarrays: Versatile tools for rapid bacterial diagnostics. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Zourob, M., Elwary, S., Turner, A., Eds.; Springer: New York, NY, USA, 2008; pp. 629–657.
[5]
Rasooly, A.; Herold, K.E. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog. Dis. 2008, 5(4), 531–550, doi:10.1089/fpd.2008.0119.
[6]
Velusamy, V.; Arshak, K.; Korostynska, O.; Oliva, K.; Adley, C. An overview of foodborne pathogen detection: In perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254, doi:10.1016/j.biotechadv.2009.12.004.
[7]
Volokhov, D.V.; Kong, H.; Herold, K.; Chizhikov, V.E.; Rasooly, A. Oligonucleotide microarrays for identification of microbial pathogens and detection of their virulence-associated or drug-resistance determinants. In Biological Microarrays: Methods and Protocols; Khademhosseini, A., Suh, K.-Y., Zourob, M., Eds.; Humana Press: New York, NY, USA, 2011; pp. 55–94.
[8]
Friedrich, T.; Rahmann, S.; Weigel, W.; Rabsch, W.; Fruth, A.; Ron, E.; Gunzer, F.; Dandekar, T.; Hacker, J.; Müller, T.; Dobrindt, U. High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis. BMC Genomics 2010, 11, 591, doi:10.1186/1471-2164-11-591.
[9]
Letowski, J.; Brousseau, R.; Masson, L. Designing better probes: Effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J. Microbiol. Methods. 2004, 57(2), 269–278.
Baggerly, K.; Mitra, R.; Grier, R.; Medhane, D.; Lozano, G.; Kapoor, M. Comparison of sample-labeling techniques in DNA microarray experiments. Anal. Chim. Acta. 2004, 506(2), 117–125.
[12]
Alere Technologies GmbH Homepage. Alere Technologies GmbH: Jena, Germany, 2011. Available online: http://alere-technologies.com/en/products/lab-solutions.html/ (accessed on 12 October 2011).
[13]
Legyon Homepage. Legyon: Lelystad, The Netherlands, 2011. Available online: http://www.legyon.nl/en/our-products/legionellachip (accessed on 12 October 2011).
[14]
Genomica Homepage. Genomica: Coslada, Spain, 2011. Available online: http://www.genomica.es/en/in_vitro_diagnostics_products.cfm (accessed on 12 October 2011).
[15]
Luminex Corporation Homepage. Luminex: Austin, TX, USA, 2011. Available online: http://www.luminexcorp.com/ (accessed on 12 October 2011).
[16]
Dunbar, S.A. Applications of Luminex? xMAPTM technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 2006, 363, 71–82.
[17]
Amann, R.I.; Ludwig, W.; Schleifer, K.-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59(1), 143–169.
[18]
Santos, S.R.; Ochman, H. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ. Microbiol. 2004, 6(7), 754–759, doi:10.1111/j.1462-2920.2004.00617.x.
Wang, X.-W.; Zhang, L.; Jin, L.-Q.; Jin, M.; Shen, Z.-Q.; An, S.; Chao, F.-H.; Li, J.-W. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. Appl. Microbiol. Biotechnol. 2007, 76, 225–233, doi:10.1007/s00253-007-0993-x.
[21]
Lee, D.-Y.; Lauder, H.; Cruwys, H.; Falletta, P.; Beaudette, L.A. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens. Sci. Total. Environ. 2008, 398, 203–211, doi:10.1016/j.scitotenv.2008.03.004.
[22]
BLAST. National Center for Biotechnology Information: Bethesda, MD, USA, 2011. Available online: http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 12 October 2011).
[23]
Cremonesi, P.; Pisoni, G.; Severgnini, M.; Consolandi, C.; Moroni, P.; Raschetti, M.; Castiglioni, B. Pathogen detection in milk samples by ligation detection reaction-mediated universal array method. J. Dairy Sci. 2009, 92, 3027–3039, doi:10.3168/jds.2008-1773.
[24]
Wang, M.; Cao, B.; Gao, Q.; Sun, Y.; Liu, P.; Feng, L.; Wang, L. Detection of Enterobacter sakazakii and other pathogens associated with infant formula powder by use of a DNA microarray. J. Clin. Microbiol. 2009, 47(10), 3178–3184.
[25]
Maynard, C.; Berthiaume, F.; Lemarchand, K.; Harel, J.; Payment, P.; Bayardelle, P.; Masson, L.; Brousseau, R. Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl. Environ. Microbiol. 2005, 71(12), 8548–8557.
[26]
Kosti?, T.; Stessl, B.; Wagner, M.; Sessitsch, A.; Bodrossy, L. Microbial diagnostic microarray for food- and waterborne pathogens. Microb. Biotechnol. 2010, 3, 444–454, doi:10.1111/j.1751-7915.2010.00176.x.
[27]
Rudi, K.; Treimo, J.; Nissen, H.; Vegarud, G. Protocols for 16S rDNA array analyses of microbial communities by sequence-specific labelling of DNA probes. Scientific World Journal 2003, 3, 578–584, doi:10.1100/tsw.2003.44.
[28]
Call, D.R.; Brockman, F.J.; Chandler, D.P. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int. J. Food Microbiol. 2001, 67, 71–80.
[29]
Sergeev, N.; Distler, M.; Courtney, S.; Al-Khaldi, S.F.; Volokhov, D.; Chizhikov, V.; Rasooly, A. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens. Bioelectron. 2004, 20, 684–698, doi:10.1016/j.bios.2004.04.030.
Miller, S.M.; Tourlousse, D.M.; Stedtfeld, R.D.; Baushke, S.W.; Herzog, A.B.; Wick, L.M.; Rouillard, J.M.; Gulari, E.; Tiedje, J.M.; Hashsham, S.A. In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Appl. Environ. Microbiol. 2008, 74(7), 2200–2209.
[32]
Kim, H.-J.; Park, S.-H.; Lee, T.-H.; Nahm, B.-H.; Kim, Y.-R.; Kim, H.-Y. Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics. Biosens. Bioelectron. 2008, 24, 238–246, doi:10.1016/j.bios.2008.03.019.
[33]
Peterson, G.; Bai, J.; Nagaraja, T.G.; Narayanan, S. Diagnostic microarray for human and animal bacterial diseases and their virulence and antimicrobial resistance genes. J. Microbiol. Methods. 2010, 80, 223–230, doi:10.1016/j.mimet.2009.12.010.
[34]
Suo, B.; He, Y.; Paoli, G.; Gehring, A.; Tu, S.-I.; Shi, X. Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol. Cell Probes. 2010, 24(2), 77–86.
Anjum, M.F.; Mafura, M.; Slickers, P.; Ballmer, K.; Kuhnert, P.; Woodward, M.J.; Ehricht, R. Pathotyping Escherichia coli by using miniaturized DNA microarrays. Appl. Environ. Microbiol. 2007, 73, 5692–5697.
[37]
Bruant, G.; Maynard, C.; Bekal, S.; Gaucher, I.; Masson, L.; Brousseau, R.; Harel, J. Development and validation of an oligonucleotide microarray for detection of multiple virulence and antimicrobial resistance genes in Escherichia coli. Appl. Environ. Microbiol. 2006, 72(5), 3780–3784.
[38]
Hamelin, K.; Bruant, G.; El-Shaarawi, A.; Hill, S.; Edge, T.A.; Fairbrother, J.; Harel, J.; Maynard, C.; Masson, L.; Brousseau, R. Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair river and Detroit river areas. Appl. Environ. Microbiol. 2007, 73(2), 477–484.
[39]
Ballmer, K.; Korczak, B.M.; Kuhnert, P.; Slickers, P.; Ehricht, R.; Hachler, H. Fast DNA-serotyping of Escherichia coli by oligonucleotide microarray. J. Clin. Microbiol. 2007, 45, 370–379.
[40]
Huehn, S.; Bunge, C.; Junker, E.; Helmuth, R.; Malorny, B. Poultry-associated Salmonella enterica subsp. enterica serovar 4,12:d:– reveals high clonality and a distinct pathogenicity gene repertoire. Appl. Environ. Microbiol. 2009, 75(4), 1011–1020.
[41]
Gr?nlund, H., Ribera; Vigre, H.; L?fstr?m, C.; Folling, L.; Huehn, S.; Malorny, B.; R?dstr?m, P.; Rudi, K.; Hoorfar, J. Microarray-based genotyping of Salmonella: Inter-laboratory evaluation of reproducibility and standardization potential. Int. J. Food Microbiol. 2010, 145(1), S79–S85.
[42]
Wattiau, P.; Weijers, T.; Andreoli, P.; Schliker, C.; Vander Veken, H.; Maas, H.M.E.; Verbruggen, A.J.; Heck, M.E.O.C.; Wannet, W.J.; Imberechts, H.; Vos, P. Evaluation of the Premi?Test Salmonella, a commercial low-density DNA microarray system intended for routine identification and typing of Salmonella enterica. Int. J. Food Microbiol. 2008, 123(3), 293–298.
[43]
Wattiau, P.; Van Hessche, M.; Schlicker, C.; Vander Veken, H.; Imberechts, H. Comparison of classical serotyping and PremiTest assay for routine identification of common Salmonella enterica serovars. J. Clin. Microbiol. 2008, 46(12), 4037–4040.
[44]
Tankouo-Sandjong, B.; Sessitsch, A.; Stralis-Pavese, N.; Liebana, E.; Kornschober, C.; Allerberger, F.; H?chler, H.; Bodrossy, L. Development of an oligonucleotide microarray method for Salmonella serotyping. Microb. Biotechnol. 2008, 1(6), 513–522.
Perreten, V.; Vorlet-Fawer, L.; Slickers, P.; Ehricht, R.; Kuhnert, P.; Frey, J. Microarray-based detection of 90 antibiotic resistance genes of Gram-positive bacteria. J. Clin. Microbiol. 2005, 43(5), 2291–2302.
[47]
Batchelor, M.; Hopkins, K.L.; Liebana, E.; Slickers, P.; Ehricht, R.; Mafura, M.; Aarestrup, F.; Mevius, D.; Clifton-Hadley, F.A.; Woodward, M.J; Davies, R.H.; Threlfall, E.J.; Anjum, M.F. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. Int. J. Antimicrob. Agents. 2008, 31(5), 440–451.
[48]
Lee, D.-Y.; Shanon, K.; Beaudette, L.A. Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. J. Microbiol. Methods 2006, 65(3), 453–467.
[49]
Palka-Santini, M.; Cleven, B.E.; Eichinger, L.; Kr?nke, M.; Krut, O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol. 2009, 9, 1.
[50]
Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34(4), 415–425.
[51]
Rossen, L.; Norskov, P.; Holmstrom, K.; Rasmussen, O.F. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 1992, 17, 37–45, doi:10.1016/0168-1605(92)90017-W.
[52]
Adamczyk, J.; Hesselsoe, M.; Iversen, N.; Horn, M.; Lehner, A.; Nielsen, P.H.; Schloter, M.; Roslev, P.; Wagner, M. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 2003, 69(11), 6875–6887.
[53]
Bodrossy, L.; Stralis-Pavese, N.; Konrad-K?szler, M.; Weilharter, A.; Reichenauer, T.G.; Sch?fer, D.; Sessitsch, A. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl. Environ. Microbiol. 2006, 72(2), 1672–1676.
[54]
Nocker, A.; Cheung, C.-Y.; Camper, A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods. 2006, 67(2), 310–320.
[55]
Varma, M.; Field, R.; Stinson, M.; Rukovets, B.; Wymer, L.; Haugland, R. Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater. Water Res. 2009, 49(19), 4790–4801.
[56]
Nocker, A.; Mazza, A.; Masson, L.; Camper, A.K.; Brousseau, R. Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology. J. Microbiol. Methods. 2009, 76(3), 253–261.
[57]
Lemarchand, K.; Berthiaumea, F.; Maynard, C.; Harel, J.; Payment, P.; Bayardelle, P.; Masson, L.; Brousseau, R. Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays. J. Microbiol. Methods. 2005, 63(2), 115–126.
[58]
Lauri, A.; Mariani, P.O. Potentials and limitations of molecular diagnostic methods in food safety. Genes Nutr. 2009, 4, 1–12, doi:10.1007/s12263-008-0106-1.
[59]
Girones, R.; Ferrus, M.A.; Alonso, J.L.; Rodriguez-Manzano, J; Calgua, B.; Correa Ade, A.; Hundesa, A.; Carratala, A.; Bofill-Mas, S. Molecular detection of pathogens in water—The pros and cons of molecular techniques. Water Res. 2010, 44, 4325–4339, doi:10.1016/j.watres.2010.06.030.
[60]
Coppee, J.-Y. Do DNA microarrays have their future behind them? Microbes Infect. 2008, 10, 1067–1071, doi:10.1016/j.micinf.2008.07.003.
[61]
Ledford, H. The death of microarrays? Nature 2008, 455, 847, doi:10.1038/455847a.