全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CHANGE DETECTION FOR SAR IMAGES BASED ON JOINT-CLASSIFICATION OF BI-TEMPORAL IMAGES
基于两时相图像联合分类的SAR图像变化检测

Keywords: change detection,SAR image,joint-classification,similarity
变化检测
,SAR图像,联合分类,相似度

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统分类后比较法(post-classification comparison,PCC)存在分类累积误差问题,且对单幅图像分类精度要求较高,对此,根据不同时相图像的不变信息所具有的相关性,提出了一种基于两时相图像联合分类的SAR图像变化检测方法.该方法以灰度值作为输入信息,通过相似度计算可得两时相图像对应位置像素的灰度相似度,然后求解全局相似度阈值,并用于控制基于K-均值的联合分类器对两时相图像进行联合分类,最后通过类别比较获得变化检测结果.实验结果表明本文方法不但可提高单幅图像的分类精度,而且能够精确地把不同时相图像的不变地物信息划分为同一类别,减少了分类累积误差的影响,提高了变化检测性能.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133