全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

Characterizing Frothers through Critical Coalescence Concentration (CCC)95-Hydrophile-Lipophile Balance (HLB) Relationship

DOI: 10.3390/min2030208

Keywords: flotation, frothers, bubbles, coalescence, CCC, HLB

Full-Text   Cite this paper   Add to My Lib

Abstract:

Frothers are surfactants commonly used to reduce bubble size in mineral flotation. This paper describes a methodology to characterize frothers by relating impact on bubble size reduction represented by CCC (critical coalescence concentration) to frother structure represented by HLB (hydrophile-lipophile balance). Thirty-six surfactants were tested from three frother families: Aliphatic Alcohols, Polypropylene Glycol Alkyl Ethers and Polypropylene Glycols, covering a range in alkyl groups (represented by n, the number of carbon atoms) and number of Propylene Oxide groups (represented by m). The Sauter mean size (D 32) was derived from bubble size distribution measured in a 0.8 m 3 mechanical flotation cell. The D 32 vs. concentration data were fitted to a 3-parameter model to determine CCC95, the concentration giving 95% reduction in bubble size compared to water only. It was shown that each family exhibits a unique CCC95-HLB relationship dependent on n and m. Empirical models were developed to predict CCC95 either from HLB or directly from n and m. Commercial frothers of known family were shown to fit the relationships. Use of the model to predict D 32 is illustrated.

References

[1]  Rao, S.R.; Leja, J. Surface Chemistry of Froth Flotation, 2nd ed.; Kluwer Academic Publication: New York, NY, USA, 2004.
[2]  Nesset, J.E.; Finch, J.A.; Gomez, C.O. Operating variables affecting bubble size in force-air mechanical flotation machines. In Proceeding of the 9th Mill Operators Conference, Fremantle, Australia, 19-21 March 2007; pp. 55–65.
[3]  Gorain, B.K.; Franzidis, J.P.; Manlapig, E.V. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 4: Effect of bubble surface area flux on flotation performance. Miner. Eng. 1997, 10, 367–379, doi:10.1016/S0892-6875(97)00014-9.
[4]  Gorain, B.K.; Napier-Munn, T.J.; Franzidis, J.P.; Manlapig, E.V. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 5: Validation of the k-Sb relationship and effect of froth depth. Miner. Eng. 1998, 11, 615–626, doi:10.1016/S0892-6875(98)00046-6.
[5]  Harris, M.C.; Runge, K.C.; Whiten, W.J.; Morrison, R.D. JKSimFloat as a practical tool for flotation process design and optimization. In Proceedings of the Mineral Processing Plant Design Practice and Control Conference, BC, Canada, 20-24 October 2002; Mular, A.L., Halbe, D.N., Barratt, D.L., Eds.; Society for Mining Metallurgy & Exploration: New York, NY, USA, 2002; pp. 461–478.
[6]  Yoon, R.H. Microbubble flotation. Miner. Eng. 1993, 6, 619–630, doi:10.1016/0892-6875(93)90116-5.
[7]  Hernandez-Aguilar, J.R.; Basi, J.; Finch, J.A. Improving column flotation operation in a copper/molybdenum separation circuit. CIM J. 2010, 1(3), 165–175.
[8]  Finch, J.A.; Dobby, G.S. Column flotation—A selected review. Part 1. Int. J. Miner. Proc. 1991, 33, 343–354.
[9]  Harris, C.C. Flotation machines. In Flotation, A.M. Gaudin Memorial Volume; Fuerstenau, M.C., Ed.; AM Gaudin Memorial Volume AIME: New York, NY, USA, 1976; Volume 2, pp. 753–815.
[10]  Cho, Y.S.; Laskowski, J.S. Effect of flotation frothers on bubble size and foam Stability. Int. J. Miner. Process. 2002, 64(2-3), 69–80, doi:10.1016/S0301-7516(01)00064-3.
[11]  Laskowski, J.S. Fundamental properties of flotation frothers. In Proceedings of the 22nd International Mineral Processing Congress, Cape Town, South Africa, 28 September-3 October 2003; pp. 788–797.
[12]  Grau, R.A.; Laskowski, J.S.; Heiskanen, K. Effect of frothers on bubble size. Int. J. Miner. Process. 2005, 76, 225–233, doi:10.1016/j.minpro.2005.01.004.
[13]  Nesset, J.E.; Zhang, W.; Finch, J.A. A benchmarking tool for assessing flotation cell performance. In Proceedings of 2012—44th Annual Meeting of the Canadian Mineral Processors (CIM), Ottawa, Canada, 17-19 January 2012; pp. 183–209.
[14]  Griffin, W.C. Classification of surface-active agents by HLB. J. Cosmet. Chem. 1949, 1, 311–326.
[15]  Davies, J.T. De door Davies toegekende HLB-groepswaarden zijn gebaseerd op een klein aantal experimenteel bepaalde HLB-waarden en daardoor beperkt toepasbaar. Het feit dat de groepswaarden toch veelvuldig gebruikt worden,wijst op een duidelijke behoefte om emulsiesl.abili telt te kunnen vooi—Spellen op basis van de chemische structuur van de emulgator. In. In Proceeding of 2nd International Congress on Surface Activity, London, UK, 1957; 1, p. 426.
[16]  Mittal, K.L.; Lindman, B. Surfactants in Solution; Plenum Press: New York, NY, USA, 1984; Volume 3, p. 1925.
[17]  Proverbio, Z.E.; Bardavid, S.M.; Arancibia, E.L.; Schulz, P.C. Hydrophile-lipophile balance and solubility parameter of cationic surfactants. Colloid. Surface. A 2003, 214, 167–171, doi:10.1016/S0927-7757(02)00404-1.
[18]  Wu, J.Y.; Xu, Y.M.; Dabros, T.; Hamza, H. Development of a method for measurement of relative solubility of nonionic surfactants. Colloid. Surface. A 2004, 232, 229–137, doi:10.1016/j.colsurfa.2003.10.028.
[19]  Davies, J.T.; Rideal, E.K. Interfacial Phenomena; Academic Press: New York, NY, USA, 1961; p. 371.
[20]  Tanaka, K.; Igarashi, A. Determination of nonionic surfactants. In Handbook of Detergents Part C: Analysis; Waldhoff, H., Spilker, R., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 149–214.
[21]  Pugh, R.J. The physics and chemistry of frothers. In Froth Flotation:A Century of Innovation; Fuerstenau, M.C., Jameson, G., Yoon, R.H., Eds.; SME: Englewood, CO, USA, 2007; pp. 259–281.
[22]  Hernandez-Aguilar, J.R.; Gomez, C.O.; Finch, J.A. A technique for the direct measurement of bubble size distribution in industrial flotation cells. In Proceedings of 2002—34th Annual Meeting of the Canadian Mineral Processors (CIM), Ottawa, Canada, 22-24 January 2002; pp. 389–402.
[23]  Gomez, C.O.; Finch, J.A. Gas dispersion measurements in flotation cells. Int. J. Miner. Process. 2007, 84, 51–58, doi:10.1016/j.minpro.2007.03.009.
[24]  Zhang, W.; Kolahdoozan, M.; Nesset, J.E.; Finch, J.A. Use of frother with sampling-for-imaging bubble sizing technique. Miner. Eng. 2009, 22, 513–515, doi:10.1016/j.mineng.2008.11.004.
[25]  Grau, R.A.; Laskowski, J.S. Role of frothers in bubble generation and coalescence in a mechanical flotation cell. Can. J. Chem. Eng. 2006, 84, 170–182.
[26]  Keitel, G.; Onken, U. Inhibition of bubble coalescence by solutes in air/water dispersions. Chem. Eng. Sci. 1982, 37, 1635–1638, doi:10.1016/0009-2509(82)80033-X.
[27]  Drogaris, G.; Weiland, P. Coalescence behaviour of gas bubbles in aqueous solutions of n-alcohols and fatty acids. Chem. Eng. Sci. 1983, 38, 1501–1506, doi:10.1016/0009-2509(83)80085-2.
[28]  Lin, I.J.; Somasundaran, P. Free energy changes on transfer of surface active agents between various colloidal and interfacial states. J.Colloid Interface Sci. 1971, 37, 731–743, doi:10.1016/0021-9797(71)90352-3.
[29]  Lin, I.J.; Friend, J.P.; Zimmels, Y. The effect of structural modification on the hydrophile-lipophile balance of ionic surfactants. J. Colloid Interface Sci. 1973, 45, 378–385, doi:10.1016/0021-9797(73)90275-0.
[30]  Lin, I.J.; Marszall, L. CMC, HLB, and effective chain length of surface-active anionic and cationic substances containing oxyethylene groups. J. Colloid Interface Sci. 1976, 57, 85–93, doi:10.1016/0021-9797(76)90178-8.
[31]  Lin, I.J. Colloid and Interface Science; Kevker, M., Ed.; Academic Press: New York, NY, USA, 1976; Volume 2, p. 431.
[32]  McGowan, J.C. A new approach for the calculation of hydrophile-lipophile balance values of surfactants. Tenside Surfactants Deterg. 1990, 27, 229–230.
[33]  Sowada, R.; McGowan, J.C. Calculation of Hydrophile-lipophile Balance (HLB) group number for some structural units of emulsifying agents. Tenside Surfactants Deterg. 1992, 29, 109–113.
[34]  Berguerio, J.R.; Bao, M.; Casares, J.J. Determination of HLB of non-ionic dispersants by NMR. Anal. Quim. 1978, 74, 529–530.
[35]  Gomez, C.O.; Finch, J.A. Gas dispersion measurements in flotation machines. CIM Bull. 2002, 95(1066), 73–78.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133