The contribution presents a modified method of stochastic reconstruction of two porous stainless-steel filters. The description of their microstructures was based on a combination of the two-point probability function for the void phase and the lineal-path functions for the void and solid phases. The method of stochastic reconstruction based on simulated annealing was capable of reproducing good connectivity of both phases, which was confirmed by calculating descriptors of the local porosity theory. Theoretical values of permeability were compared with their experimental counterparts measured by means of quasi-stationary permeation of four inert gases.
References
[1]
Lymberopoulos, D.P.; Payatakes, A.C. Derivation of topological geometrical and correlation properties of porous media from pore-chart analysis of serial tomography data. J. Colloid Interface Sci. 1992, 150, 61–80, doi:10.1016/0021-9797(92)90268-Q.
[2]
Spanne, P.; Thovert, J.F.; Jacquin, C.J.; Lindquist, W.B.; Jones, K.W.; Adler, P.M. Synchrotron computed microtomography of porous media: Topology and transports. Phys. Rev. Lett. 1994, 73, 2001–2004, doi:10.1103/PhysRevLett.73.2001.
[3]
?apek, P.; Hejtmánek, V.; Brabec, L.; Zikánová, A.; Ko?i?ík, M. Stochastic reconstruction of particulate media using simulated annealing. Transp. Porous Med. 2009, 76, 179–198, doi:10.1007/s11242-008-9242-8.
[4]
?apek, P.; Hejtmánek, V.; Kolafa, J.; Brabec, L. Transport properties of stochastically reconstructed porous media with improved pore connectivity. Transp. Porous Med. 2011, 88, 87–106, doi:10.1007/s11242-011-9726-9.
[5]
Biswal, B.; Manwart, C.; Hilfer, R. Three-dimensional local porosity analysis of porous media. Physica A 1998, 255, 221–241, doi:10.1016/S0378-4371(98)00111-3.
[6]
Hilfer, R. Local porosity theory and stochastic reconstruction for porous media. In Statistical Physics and Spatial Statistics, Lecture Notes in Physics; Mecke, K., Stoyan, D., Eds.; Springer-Verlag: Heidelberg, Germany, 2000; Volume 254, pp. 203–241.
[7]
Gonzales, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice Hall: New Jersey, NJ, USA, 2002.
[8]
Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, SMC?9, 62–66.
[9]
Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer Verlag: New York, NY, USA, 2002.
[10]
Rintoul, M.D.; Torquato, S. Reconstruction of the structure of dispersions. J. Colloid Interface Sci. 1997, 186, 467–476, doi:10.1006/jcis.1996.4675.
[11]
Yeong, C.L.Y.; Torquato, S. Reconstructing random media. Phys. Rev. E 1998, 58, 495–506.
[12]
Yeong, C.L.Y.; Torquato, S. Reconstructing random media II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 1998, 58, 224–233, doi:10.1103/PhysRevE.58.224.
[13]
Bentz, D.P.; Martys, N.S. A Stokes Permeability Solver for Three-Dimensional Porous Media; U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007.
[14]
Fott, P.; Petrini, G. Determination of transport parameters of porous catalysts from permeation measurements. Appl. Catal. 1982, 2, 367–378, doi:10.1016/0166-9834(82)80155-3.