全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2012 

The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams

DOI: 10.3390/met2020095

Keywords: Al-based foams, foaming agents, processing, cell wall constituents, mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

The results of the present study highlight the role of foaming agent and processing route in influencing the contamination of cell wall material by side products, which, in turn, affect the macroscopic mechanical response of closed-cell Al-foams. Several kinds of Al-foams have been produced with pure Al by the Alporas melt process and powder metallurgical technique, all performed either with conventional TiH 2 foaming agent or CaCO 3 as an alternative. Mechanical characteristics of contaminating products induced by processing additives, all of which were presented in one or another kind of Al-foam, have been determined in indentation experiments. Damage behavior of these contaminations affects the micro-mechanism of deformation and favors either plastic buckling or brittle failure of the cell walls. It is justified that there is no discrepancy between experimental values of compressive strengths for Al-foams comprising ductile Al + Al 4Ca eutectic domains and those prescribed by theoretical models for closed-cell structure. However, the presence of low ductile Al + Al 3Ti + Al 4Ca eutectic domains and brittle particles/layers of Al 3Ti, fine CaCO 3/CaO particles, Al 2O 3 oxide network, and, especially, residues of partially reacted TiH 2, results in reducing the compressive strength to values close to or even below those of open-cell foams of the same relative density.

References

[1]  Markaki, A.E.; Clyne, T.V. Characterization of impact response of metallic foam/ceramic laminates. Mater. Sci. Technol. 2000, 16, 785–791.
[2]  Crupi, V.; Epasto, G.; Guglielmino, E. Impact response of aluminum sandviches for light-weight ship structures. Metals 2011, 1, 98–112.
[3]  Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J. Metal Foams: A Design Guide; Butterworth-Heinemann Press: Waltham, MA, USA, 2000.
[4]  Banhart, J. Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 2001, 46, 559–632.
[5]  Neugebauer, R.; Hipke, J.; Hohlfeld, T.; Thummler, R. Highly damped machine tools with metal foam. In Proceedings of the International Conference Advanced metallic materials, Smolenice Castle, Slovakia, 5–7 November 2003; Jerz, J., Ed.; Institute of Materials and Machine Mechanics: Smolenice, Slovakia, 2003; pp. 214–218.
[6]  Nakamura, T.; Gnyloskurenko, S.V.; Sakamoto, K.; Byakova, A.V.; Ishikava, R. Development of new foaming agent for metal foam. Mater. Trans. 2002, 43, 1191–1196.
[7]  Gergely, V.; Curran, D.C.; Clyne, T.W. The FOAMCARP process: Foaming of aluminum MMCs by the chalk-aluminum reaction in precursor. Compos. Sci. Technol. 2003, 63, 2301–2310, doi:10.1016/S0266-3538(03)00263-X.
[8]  Byakova, A.V.; Gnyloskurenko, S.V.; Maeda, M.; Nakamura, T.; Sakamoto, K.; Podrezov, Y.N.; Ishikawa, R. Development of lightweight Al alloy and technique. Can. Metall. Q. 2005, 44, 7–12.
[9]  Byakova, A.V.; Sirko, A.I.; Mykhalenkov, K.V.; Milman, Y.V.; Gnyloskurenko, S.V.; Nakamura, T. Progress in aluminum foam technique: Application of the carbonate foaming agent for Alporas and powder compact routes. In Porous Metals and Metal Foaming Technology; Nakajima, H., Kanetake, N., Eds.; JIM Press: Tokyo, Japan, 2005; pp. 273–278.
[10]  Byakova, A.V.; Sirko, A.I.; Mykhalenkov, K.V.; Milman, Y.V.; Gnyloskurenko, S.V.; Nakamura, T. Improvements in stabilisation and cellular structure of Al based foams with novel carbonate foaming agent. High Temp. Mater. Processes. 2007, 26, 239–245, doi:10.1515/HTMP.2007.26.4.239.
[11]  Gibson, L.J. Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 2000, 30, 191–227.
[12]  Milman, Y.; Byakova, A.; Podrezov, Y.; Verbilo, D.; Nakamura, T. The effect of processing route on the energy management of foamed Al alloys. In Porous Metals and Metal Foaming Technology; Nakajima H. Kanetake, N., Ed.; JIM Press: Tokyo, Japan, 2005; pp. 503–508.
[13]  Markaki, A.E.; Clyne, T.W. The effect of cell wall microstructure on the deformation and fracture of aluminum-based foams. Acta mater. 2001, 49, 1677–1686.
[14]  Milman, Y.; Byakova, A.; Sirko, A.; Gnyloskurenko, S.; Nakamura, T. Improvement of structure and deformation behavior of high-strength Al-Zn-Mg foams. Mater. Sci. Forum 2006, 519-521, 573-578.
[15]  Miyoshi, T.; Mukai, T.; Hihashi, K. Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam. Mater. Trans. 2002, 43, 1778–1781.
[16]  Toda, H.; Kuroda, N.; Ohgaki, T. Image-based mechanical analysis of dynamic deformation and damage behaviors in an aluminum foam using synchrotron X-ray microtomography. In Porous Metals and Metal Foaming Technology; Nakajima H. Kanetake, N., Ed.; JIM Press: Tokyo, Japan, 2005; pp. 409–414.
[17]  Sugimura, Y.; Meyer, J.; He, M.Y. On mechanical performance of closed cell Al alloy foams. Acta Mater. 1997, 45, 5245–5259.
[18]  Byakova, A.; Gnyloskurenko, S.; Sirko, A.; Milman, Y.; Nakamura, T. The role of foaming agent in structure and mechanical performance of Al based foams. Mater. Trans. 2006, 47, 2131–2136.
[19]  Gnyloskurenko, S.V.; Byakova, A.V.; Sirko, A.I.; Dudnyk, A.O.; Milman, Y.V.; Nakamura, T. Advanced structure and deformation pattern of Al based alloys foamed with calcium carbonate agent. In Metals and Melt Foaming Technology, Proceedings of 5th International Conference Porous Metals and Metallic Foams, Montreal, PQ, Canada, 5-7 September 2007; DEStech Publications, Inc.: Lancaster, USA, 2007; pp. 399–402.
[20]  Markaki, A.E.; Clyne, T.V. Characterization of impact response of metallic foam/ceramic laminates. Mater. Sci. Technol. 2000, 16, 785–791.
[21]  Crupi, V.; Epasto, G.; Guglielmino, E. Low velocity impact strength of sandwich materials. J. Sandw. Struct. Mater. 2011, 17, 32–41.
[22]  Gibson, L.G.; Ashby, M.F. Cellular Solids: Structure and Properties; Pergamon Press: New York, NY, USA, 1988.
[23]  Simone, A.E.; Gibsons, L.J. The effect of cell face and corrugations on the stiffness and strength of metallic foams. Acta Mater. 1998, 46, 3929–3935.
[24]  Kriszt, B.; Foroughi, B.; Faure, K.; Degisher, H.P. Behavior of aluminum foam under uniaxial compression. Mater. Sci. Technol. 2000, 16, 792–796.
[25]  Harders, H.; Huper, K.; Rosler, J. Influence of cell wall shape and density on mechanical behavior of 2d foam structures. Acta Mater. 2005, 53, 1335–1345, doi:10.1016/j.actamat.2004.11.025.
[26]  Jeon, I.; Asahina, T. The effect of structural defects on the compressive behavior of closed-cell Al foam. Acta Mater. 2005, 53, 3415–342.
[27]  Milman, Y.V.; Miracle, D.B.; Chugunova, S.I.; Voskoboinik, I.V.; Korzhova, N.P.; Legkayaa, T.N.; Podrezova, Y.N. Mechanical behavior of Al3Ti intermetallic and L12 phases on its basis. Intermetallics 2001, 9, 839–845.
[28]  Milman, Y.V.; Galanov, B.A.; Chugunova, S.I. Plasticity characteristic obtained through hardness measurement. Acta Metall. Mater. 1993, 41, 2523–2532, doi:10.1016/0956-7151(93)90122-9.
[29]  Wu, C.C.; Rice, R.W. Porosity dependence of wear and other mechanical properties of fine-grain Al2O3 and B4C. Ceram. Eng. Sci. Proc. 1985, 6, 977–994.
[30]  Hainsworth, V.; Whitehead, A.J.; Page, T.F. The nanoindentation response of silicon and related isostructural materials. In Plastic Deformation of Ceramics; Bradt, R.C., Brookes, C.A., Routbort, J.L., Eds.; Plenum Press: New York, NY, USA, 1995.
[31]  Bart-Smith, H.; Bastawros, A.F.; Mumm, D.R.; Evans, A.G.; Sypeck, D.J.; Wadley, H.N.G. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Mater. 1998, 46, 3583–3592.
[32]  Akiyama, S.; Ueno, H.; Imagawa, K.; Kitahara, A.; Nagata, S.; Morimoto, K.; Nishikawa, T.; Itoh, M. Foamed Metal and Method of Producing Same. U.S. Patent 4,713,277, 15 December 1987.
[33]  Nakamura, T.; Gnyloskurenko, S.V.; Sakamoto, K.; Byakova, A.V.; Ishikawa, R. Development of new foaming agent for metal foam. Mater. Trans. 2002, 43, 1191–1196.
[34]  Byakova, A.V.; Milman, Yu.V.; Vlasov, A.A. Application of plasticity characteristic determined by indentation technique for evaluation of mechanical properties of coatings: I. specific features of test method procedure. Sci. Sinter. 2004, 36, 27–41, doi:10.2298/SOS0401027B.
[35]  Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sencing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583, doi:10.1557/JMR.1992.1564.
[36]  Milman, Y.V.; Dub, S.; Golubenko, A. Plasticity characteristic obtained trough instrumental indentation. Mater. Res. Soc. Symp. Proc. 1049, 123–128.
[37]  Galanov, B.A.; Milman, Y.V.; Chugunova, S.I.; Goncharova, I.V. Investigation of mechanical properties high hardness materials by indentation. Superhard Mater. 1999, 21, 23–39.
[38]  Evans, A.G.; Charles, E.A. Fracture toughness determinations by indentation. J. Ame. Ceram. Soc. 1976, 59, 371–372.
[39]  Niihara, K.; Morena, R.; Hasselman, D.P. Evaluation of stress intensity factor of brittle solids by the indentation method with low crack-to-indent rations. J. Mater. Sci. Lett. 1982, 1, 13–16, doi:10.1007/BF00724706.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133