This paper reviews major research and development issues relating to hydrogels as scaffolds for tissue engineering, the article starts with a brief introduction of tissue engineering and hydrogels as extracellular matrix mimics, followed by a description of the various types of hydrogels and preparation methods, before a discussion of the physical and chemical properties that are important to their application. There follows a short comment on the trends of future research and development. Throughout the discussion there is an emphasis on the genetic understanding of bone tissue engineering application.
Alberts, B. Essential Cell Biology; Garland Science: New York, NY, USA, 2004.
[7]
Peppas, N.A.; Hilt, J.?Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360, doi:10.1002/adma.200501612.
[8]
Kloxin, A.M.; Kloxin, C.J.; Bowman, C.N.; Kristi, S.; Anseth, K.S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22, 3484–3494, doi:10.1002/adma.200904179.
[9]
Patel, M.; Fisher, J.P. Biomaterial scaffolds in pediatric tissue engineering. Pediat. Res. 2008, 63, 497–501, doi:10.1203/01.PDR.0b013e318165eb3e.
[10]
Huglin, M.R. Hydrogels in Medicine and Pharmacy; CRC Press: Boca Raton, FL, USA, 1986.
[11]
Smeds, K.A.; Serres, A.P.; Hatchella, D.L.; MARK, W.; Grinstaff, M.W. Synthesis of a novel polysaccharide hydrogel. J. Macromol. Sci. Pure. Appl. Chem. 1999, 36, 981–989.
[12]
Hubbell, J.A. Biomaterials in tissue engineering. Nat. Biotechnol. 1995, 13, 565–576, doi:10.1038/nbt0695-565.
Olczyk, P. Hyaluronan: Structure, metabolism, functions, and role in wound healing. Postepy Hig. Med. Dosw. 2008, 62, 651–659.
[15]
Zou, L.; Zou, X.; Chen, L.; Li, H.; Mygind, T.; Kassem, M.; Bünger, C. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J. Orthopaed. Res. 2008, 26, 713–720, doi:10.1002/jor.20539.
[16]
Gerecht, S.; Burdick, J.A.; Ferreira, L.S.; Townsend, S.A.; Langer, R.; Novakovic, G.V. Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Nat. Acad. Sci. USA 2007, 104, 11298–11303, doi:10.1073/pnas.0703723104. 17581871
[17]
Vercruysse, K.P.; Marecak, D.M.; Marecek, J.F.; Prestwich, G.D. Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chem. 1997, 8, 686–694, doi:10.1021/bc9701095.
[18]
Takigami, S.; Takigami, M.; Phillips, G.O. Hydration characteristics of the cross-linked hyaluronan derivative hylan. Carbohyd. Polym. 1993, 22, 153–160, doi:10.1016/0144-8617(93)90136-R.
[19]
Kreil, G. Hyaluronidases—A group of neglected enzymes. Protein. Sci. 1995, 4, 1666–1669, doi:10.1002/pro.5560040902.
[20]
Shu, X.Z., Liu; Palumbo, F.; Prestwich, G.D. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003, 24, 3825–3834, doi:10.1016/S0142-9612(03)00267-9. 12818555
[21]
Burdick, J.A.; Chung, C.; Jia, X.; Randolph, M.A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, 386–391, doi:10.1021/bm049508a.
[22]
Lee, F.; Chung, J.E.; Kurisawa, M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008, 4, 880–887, doi:10.1039/b719557e.
Mironov, V.; Kasyanov, V.; Zheng, S.X.; Eisenberg, C.; Eisenberg, L.; Gonda, S.; Trusk, T.; Markwald, R.R.; Prestwich, G.D. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials 2005, 26, 7628–7635, doi:10.1016/j.biomaterials.2005.05.061. 16023201
[25]
Jha, A.K.; Xu, X.; Duncan, R.L.; Jia, X. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 2011, 32, 2466–2478, doi:10.1016/j.biomaterials.2010.12.024.
[26]
Huang, Y.; Onyeri, S.; Siewe, M.; Moshfeghian, A.; Madihally, S.V. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 2005, 26, 7616–7627, doi:10.1016/j.biomaterials.2005.05.036.
[27]
Leipzig, N.D.; Wylie, R.G.; Kim, H.; Shoichet, M.S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 2011, 32, 57–64, doi:10.1016/j.biomaterials.2010.09.031.
[28]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2004, 12, 41–57, doi:10.1080/10717540590889781.
[29]
Gerrit, B. Chitosans for gene delivery. Adv. Drug. Deliv. Rev. 2001, 52, 145–150, doi:10.1016/S0169-409X(01)00198-3.
[30]
Vieira, E.F.; Cestari, A.R.; Airoldi, C.; Loh, W. Polysaccharide-based hydrogels: Preparation, characterization, and drug interaction behaviour. Biomacromolecules 2008, 9, 1195–1199, doi:10.1021/bm7011983.
[31]
Cheng, N.; Cao, X. Photosensitive chitosan to control cell attachment. J. Colloid. Interface. Sci. 2011, 361, 71–78, doi:10.1016/j.jcis.2011.05.045.
[32]
Yamaguchi, R.; Arai, Y.J.; Itoh, T.; Hirano, S. Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohyd. Res. 1981, 88, 172–175, doi:10.1016/S0008-6215(00)84614-5.
[33]
Freier, T.; Koh, H.S.; Kazazian, K.; Shoichet, M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 2005, 26, 5872–5878, doi:10.1016/j.biomaterials.2005.02.033.
[34]
Monteiro, O.J.; Airoldi, C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128, doi:10.1016/S0141-8130(99)00068-9.
[35]
Mi, F.L.; Sung, H.W.; Shyu, S.S. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J. Polym. Sci. A-Polym. Chem. 2000, 38, 2804–2814, doi:10.1002/1099-0518(20000801)38:15<2804::AID-POLA210>3.0.CO;2-Y.
Finotelli, P.V.; Sampaio, D.A.; Morales, M.A.; Rossi, A.M. Ca alginate as scaffold for iron oxide nanoparticles synthesis. Braz. J. Chem. Eng. 2008, 25, 759–764, doi:10.1590/S0104-66322008000400013.
Cha, C.; Kim, E.S.; Kim, I.W.; Kong, H. Integrative deign of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials 2011, 32, 2695–2703, doi:10.1016/j.biomaterials.2010.12.038. 21262532
[40]
Huebsch, N.; Arany, P.R.; Mao, A.S.; Shvartsman, D.; Ali, O.A.; Bencherif, S.A.; Rivera, F.J.; Mooney, D.J. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010, 9, 518–526, doi:10.1038/nmat2732.
[41]
Müller, W.E. The origin of metazoan complexity: porifera as integrated animals. Integer. Comp. Biol. 2003, 43, 3–10, doi:10.1093/icb/43.1.3.
[42]
Parkinson, J.; Brass, A.; Canova, G.; Brechet, Y. The mechanical properties of simulated collagen fibrils. J. Biomech. 1997, 30, 549–554, doi:10.1016/S0021-9290(96)00151-0.
[43]
Di Lullo, G.A.; Sweeney, S.M.; K?rkk?, J.; Leena, A.K.; Antonio, J.S. apping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type i collagen. J. Biol. Chem. 2002, 277, 4223–4231, doi:10.1074/jbc.M110709200. 11704682
[44]
Zhang, Z.; Li, G.Y.; Shi, B.L. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 2006, 90, 23–28.
[45]
Lee, S.H.; Moon, J.J.; Miller, J.S.; West, J.L. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials 2007, 28, 3163–3170, doi:10.1016/j.biomaterials.2007.03.004.
[46]
Layman, H.; Spiga, M.G.; Brooks, T.; Pham, S.; Webster, K.A.; Andreopoulos, F.M. The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 2007, 28, 2646–2654, doi:10.1016/j.biomaterials.2007.01.044.
[47]
Lyons, F.G.; Al-Munajjed, A.A.; Kieran, S.M.; Toner, M.E.; Murphy, C.M.; Duffy, G.P.; O’Brien, F.J. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 2010, 31, 9232–9243, doi:10.1016/j.biomaterials.2010.08.056. 20863559
[48]
Wang, L.S.; Chung, J.E.; Chan, P.P.; Kurisawa, M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010, 31, 1148–1157, doi:10.1016/j.biomaterials.2009.10.042. 19892395
[49]
Hern, D.L.; Hubbell, J.A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 1998, 39, 266–276, doi:10.1002/(SICI)1097-4636(199802)39:2<266::AID-JBM14>3.0.CO;2-B.
[50]
Pelham, R.J.; Wang, Y. Cell locomotion and focal adhesions are regulated by substrate?flexibility. Proc. Nat. Acad. Sci. USA 1997, 94, 13661–13665, doi:10.1073/pnas.94.25.13661.
[51]
Wang, Y.L.; Pelham, R.J. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Mol. Motor. Cytoskelet. 1998, 298, 489–496, doi:10.1016/S0076-6879(98)98041-7.
[52]
Barnard, Z.; Keen, I.; Hill, D.T.; Chirila, T.V.; Harkin, D.G. PHEMA hydrogels modified through the grafting of phosphate groups by atrp support the attachment and growth of human corneal epithelial cells. J. Biomater. Appl. 2008, 23, 147–168, doi:10.1177/0885328207086993.
[53]
Pokharna, H.K.; Zhong, Y.M.; Smith, D.J.; Dunphy, M.J. Copolymers of hydroxyethyl methacrylate with quadrol methacrylate and with various aminoalkyl methacrylamides as fibroblast cell substrata. J. Bioact. Compat. Polym. 1990, 5, 42–52, doi:10.1177/088391159000500105.
[54]
Temenoff, J.S.; Park, H.; Jabbari, E.; Conway, D.E.; Sheffield, T.L.; Ambrose, C.G.; Mikos, A.G. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 2003, 5, 5–10.
[55]
Oh, J.K.; Lee, D.I.; Park, J.M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282, doi:10.1016/j.progpolymsci.2009.08.001.
[56]
Stasko, J.; Kalni??, M.; Dzene, A.; Tupureina, V. Poly(vinyl alcohol) hydrogels. Proc. Eston. Acad. Sci. 2009, 58, 63–66, doi:10.3176/proc.2009.1.11.
[57]
Schmedlen, R.H.; Masters, K.S.; West, J.L. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002, 23, 4325–4332, doi:10.1016/S0142-9612(02)00177-1.
[58]
Martens, P.; Holland, T.; Anseth, K.S. Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 2002, 43, 6093–6100, doi:10.1016/S0032-3861(02)00561-X.
[59]
Mawad, D.; Martens, P.J.; Odell, R.A.; Poole-Warren, L.A. The effect of redox polymerisation on degradation and cell responses to poly(vinyl alcohol) hydrogels. Biomaterials 2007, 28, 947–955, doi:10.1016/j.biomaterials.2006.10.007. 17084445
[60]
Chirila, T.V.; Constablea, I.J.; Crawforda, G.J.; Vijayasekarana, S.; Thompsona, D.E.; Chen, Y.C.; Fletchera, W.A.; Griffin, B.J. Poly(2-hydroxyethyl methacrylate) sponges as implant materials: In vivo and in vitro evaluation of cellular invasion. Biomaterials 1993, 14, 26–38, doi:10.1016/0142-9612(93)90072-A.
[61]
Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118, doi:10.1038/185117a0.
Fusco, S.; Borzacchiello, A.; Netti, P.A. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J. Bioact. Compat. Polym. 2006, 21, 149–164, doi:10.1177/0883911506063207.
[70]
Bromberg, L.E.; Ron, E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998, 31, 197–221, doi:10.1016/S0169-409X(97)00121-X.
[71]
Lindman, B.; Alexandridis, P. Amphiphilic Block Copolymers Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000.
Neff, J.A.; Caldwell, K.D.; Tresco, P.A. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J. Biomed. Mater. Res. 1998, 40, 511–519, doi:10.1002/(SICI)1097-4636(19980615)40:4<511::AID-JBM1>3.0.CO;2-I.
[74]
Vanderhooft, J.L.; Mann, B.K.; Prestwich, G.D. synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules 2007, 8, 2883–2889, doi:10.1021/bm0703564.
[75]
Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 1996, 12, 697–715, doi:10.1146/annurev.cellbio.12.1.697.
[76]
H?lig, P.; Bach, M.; V?lkel, T.; Thomas Nahde, T.; Hoffmann, S.; Müller, R.; Roland, E.; Kontermann, R.E. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng. Des. Sel. 2004, 17, 433–441, doi:10.1093/protein/gzh055.
[77]
Ford, M.C. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc. Nat. Acad. Sci. USA 2006, 103, 2512–2517, doi:10.1073/pnas.0506020102.
Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211–1218, doi:10.1016/j.biomaterials.2004.04.024.
[80]
Tse, J.R.; Engler, A.J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell. Biol. 2001, 47, 1–16.
[81]
Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Nat. Acad. Sci. USA 2010, 107, 17894–17898, doi:10.1073/pnas.1006911107. 20921374
[82]
Duan, S.F.; Zhu, W.; Yu, L.; Ding, J.D. Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel. Chin. Sci. Bull. 2005, 50, 1093–1096, doi:10.1360/982004-459.
[83]
Park, H.; Guo, X.; Temenoff, J.S.; Tabata, Y.; Caplan, A.I.; Kasper, F.K.; Antonios, G.; Mikos, A.G. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 2009, 10, 541–546, doi:10.1021/bm801197m. 19173557
Weiss, P.; Vinatier, C.; Guicheux, J.; Grimandi, G.; Daculsi, G. Self setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng. Mater. 2004, 254-256, 1107–1110, doi:10.4028/www.scientific.net/KEM.254-256.1107.
[86]
Fatimi, A.; Tassin, J.F.; Quillard, S.; Axelos, M.V.; Weiss, P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 2008, 29, 533–543, doi:10.1016/j.biomaterials.2007.10.032. 17996292
[87]
Smidsr?d, O.; Skjak-Brk, G. Alginate as immobilization matrix for cells. Trend. Biotech. 1990, 8, 71–78, doi:10.1016/0167-7799(90)90139-O.
[88]
Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319, doi:10.1126/science.1962191. 1962191
Langer, R.; Peppas, N.A. advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003, 49, 2990–3006, doi:10.1002/aic.690491202.
[93]
McBath, R.A.; Shipp, D.A. Swelling and degradation of hydrogels synthesized with degradable poly(beta-amino ester) crosslinkers. Polym. Chem. 2010, 1, 860–865, doi:10.1039/c0py00074d.
[94]
Tasdelen, B.; Apohan, N.K.; Olgun Güven, O.; Baysal, B.M. Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs. J. Appl. Polym. Sci. 2004, 91, 911–915, doi:10.1002/app.13223.
[95]
Tan, H.; Chu, C.R.; Payne, K.A.; Marra, K.G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, 2499–2506, doi:10.1016/j.biomaterials.2008.12.080.
[96]
Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, A.; Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 2007, 315, 487–490, doi:10.1126/science.1135516. 17255505
[97]
Xu, X.D.; Zhang, X.Z.; Yang, J.; Cheng, S.X.; Zhuo, R.X.; Huang, Y.Q. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Langmuir 2007, 23, 4231–4236, doi:10.1021/la063485z. 17348696
[98]
Braet, F.; De Zanger, R.; Wisse, E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: A study on hepatic endothelial cells. J. Microsc. 1997, 186, 84–87, doi:10.1046/j.1365-2818.1997.1940755.x. 9159923
[99]
Xu, C. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877–886, doi:10.1016/S0142-9612(03)00593-3.
[100]
Boyde, A.; Jones, S.J. Back-scattered electron imaging of skeletal tissues. Metab. Bone. Dis. Relat. Res. 1983, 5, 145–50, doi:10.1016/0221-8747(83)90016-4.
[101]
Boyde, A.; Lovicar, L.; Zamecnik, J. Combining confocal and bse sem imaging for bone block surfaces. Eur. Cell. Mater. 2005, 9, 33–38. 15852236
[102]
Rocchietta, I.; Dellavia, C.; Nevins, M.; Simion, M. Bone regenerated via rhpdgf-bb and a deproteinized bovine bone matrix: backscattered electron microscopic element analysis. Int. J. Periodontics. Restor. Den. 2007, 27, 539–545.
[103]
Kingsmill, V.J.; Boyde, A. Mineralisation density of human mandibular bone: Quantitative backscattered electron image analysis. Amer. J. Anat. 1998, 192, 245–256, doi:10.1046/j.1469-7580.1998.19220245.x.
[104]
Pang, X.A.; Chu, C.C. Synthesis, characterization and biodegradation of poly(ester amide)s based hydrogels. Polymer 2010, 51, 4200–4210, doi:10.1016/j.polymer.2010.07.015.
[105]
Zhang, J.X.; Ma, P.X. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano. Today 2010, 5, 337–350, doi:10.1016/j.nantod.2010.06.011.
[106]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival—Application to proliferation and cyto-toxicity assays. J. Immunol. Method. 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[107]
Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an aqueous soluble tetrazolium formazan assay for cell-growth assays in culture. Cancer. Commun. 1991, 3, 207–212. 1867954
Bueno, E.M.; Glowacki, J. Cell-free and cell-based approaches for bone regeneration. Nat. Rev. Rheumatol. 2009, 5, 685–697, doi:10.1038/nrrheum.2009.228.
[113]
El-Ghannam, A. Bone reconstruction: From bioceramics to tissue engineering. Expert Rev. Med. Devices 2005, 2, 87–101, doi:10.1586/17434440.2.1.87.
Bakhtiari, L.; Rezaie, H.R.; Hosseinalipour, S.M.; Shokrgozar, M.A. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram. Int. 2010, 36, 2421–2426, doi:10.1016/j.ceramint.2010.07.012.
[117]
Guvendiren, M.; Burdick, J.A. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 2010, 31, 6511–6518, doi:10.1016/j.biomaterials.2010.05.037.
[118]
Pritchard, C.D.; O’Shea, T.M.; Siegwart, D.J.; Calo, E.; Anderson, D.G.; Reynolds, F.M.; Thomas, J.A.; Slotkin, J.R.; Woodard, E.J.; et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 2011, 32, 587–597, doi:10.1016/j.biomaterials.2010.08.106. 20880573
[119]
Discher, D.E.; Janmey, P.; Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143, doi:10.1126/science.1116995. 16293750
[120]
Mei, Y.; Saha, K.; Bogatyrev, S.R.; Yang, J.; Hook, A.L.; Kalcioglu, I.Z.; Cho, S.W.; Mitalipova, M.; Pyzocha, N.; Rojas, F.; et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 2010, 9, 768–778, doi:10.1038/nmat2812. 20729850
[121]
Burdick, J.A.; Anseth, K.S. Photoencapsulation of osteoblasts in injectable rgd-modified peg hydrogels for bone tissue engineering. Biomaterials 2002, 23, 4315–4323, doi:10.1016/S0142-9612(02)00176-X.
[122]
Chatterjee, K.; Lin-Gibson, S.; Wallace, W.E.; Parekh, S.H.; Lee, Y.J.; Cicerone, M.T.; Young, M.F.; Simon, C.G. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 2010, 31, 5051–5062, doi:10.1016/j.biomaterials.2010.03.024.