全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2012 

Development of Hydrogels and Biomimetic Regulators as Tissue Engineering Scaffolds

DOI: 10.3390/membranes2010070

Keywords: hydrogel, bone, tissue engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reviews major research and development issues relating to hydrogels as scaffolds for tissue engineering, the article starts with a brief introduction of tissue engineering and hydrogels as extracellular matrix mimics, followed by a description of the various types of hydrogels and preparation methods, before a discussion of the physical and chemical properties that are important to their application. There follows a short comment on the trends of future research and development. Throughout the discussion there is an emphasis on the genetic understanding of bone tissue engineering application.

References

[1]  Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926, doi:10.1126/science.8493529. 8493529
[2]  Vacanti, J.P.; Morsea, M.A.; Saltzmana, W.M.; Domba, A.J.; Ataydea, A.P.; Robert, L. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediat. Surg. 1988, 23, 3–9, doi:10.1016/S0022-3468(88)80529-3.
[3]  Vacanti, J.P.; Langer, R.; Upton, J.; Marler, J.J. Transplantation of cells in matrices for tissue regeneration. Adv. Drug. Deliv. Rev. 1998, 33, 165–182, doi:10.1016/S0169-409X(98)00025-8.
[4]  Peppas, N.A. A practical approach to bodybuilding. Nature 1997, 389, 453–453, doi:10.1038/38940.
[5]  Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484, doi:10.2217/nnm.10.12.
[6]  Alberts, B. Essential Cell Biology; Garland Science: New York, NY, USA, 2004.
[7]  Peppas, N.A.; Hilt, J.?Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360, doi:10.1002/adma.200501612.
[8]  Kloxin, A.M.; Kloxin, C.J.; Bowman, C.N.; Kristi, S.; Anseth, K.S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22, 3484–3494, doi:10.1002/adma.200904179.
[9]  Patel, M.; Fisher, J.P. Biomaterial scaffolds in pediatric tissue engineering. Pediat. Res. 2008, 63, 497–501, doi:10.1203/01.PDR.0b013e318165eb3e.
[10]  Huglin, M.R. Hydrogels in Medicine and Pharmacy; CRC Press: Boca Raton, FL, USA, 1986.
[11]  Smeds, K.A.; Serres, A.P.; Hatchella, D.L.; MARK, W.; Grinstaff, M.W. Synthesis of a novel polysaccharide hydrogel. J. Macromol. Sci. Pure. Appl. Chem. 1999, 36, 981–989.
[12]  Hubbell, J.A. Biomaterials in tissue engineering. Nat. Biotechnol. 1995, 13, 565–576, doi:10.1038/nbt0695-565.
[13]  Kochlamazashvili1, G.G.; Christian, H.; Olena, B.; Dvoretskova, E.; Senkov, O.; Patricia, M.J.L.; Westenbroek, R.; Enge, A.K.; Catterall, W.A.; Rusakov, D.A.; et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type ca2+channels. Neuron 2010, 67, 116–128, doi:10.1016/j.neuron.2010.05.030.
[14]  Olczyk, P. Hyaluronan: Structure, metabolism, functions, and role in wound healing. Postepy Hig. Med. Dosw. 2008, 62, 651–659.
[15]  Zou, L.; Zou, X.; Chen, L.; Li, H.; Mygind, T.; Kassem, M.; Bünger, C. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J. Orthopaed. Res. 2008, 26, 713–720, doi:10.1002/jor.20539.
[16]  Gerecht, S.; Burdick, J.A.; Ferreira, L.S.; Townsend, S.A.; Langer, R.; Novakovic, G.V. Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Nat. Acad. Sci. USA 2007, 104, 11298–11303, doi:10.1073/pnas.0703723104. 17581871
[17]  Vercruysse, K.P.; Marecak, D.M.; Marecek, J.F.; Prestwich, G.D. Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chem. 1997, 8, 686–694, doi:10.1021/bc9701095.
[18]  Takigami, S.; Takigami, M.; Phillips, G.O. Hydration characteristics of the cross-linked hyaluronan derivative hylan. Carbohyd. Polym. 1993, 22, 153–160, doi:10.1016/0144-8617(93)90136-R.
[19]  Kreil, G. Hyaluronidases—A group of neglected enzymes. Protein. Sci. 1995, 4, 1666–1669, doi:10.1002/pro.5560040902.
[20]  Shu, X.Z., Liu; Palumbo, F.; Prestwich, G.D. Disulfide-crosslinked hyaluronan-gelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 2003, 24, 3825–3834, doi:10.1016/S0142-9612(03)00267-9. 12818555
[21]  Burdick, J.A.; Chung, C.; Jia, X.; Randolph, M.A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, 386–391, doi:10.1021/bm049508a.
[22]  Lee, F.; Chung, J.E.; Kurisawa, M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008, 4, 880–887, doi:10.1039/b719557e.
[23]  Shu, X.Z.; Liu, Y.; Palumbo, F.; Prestwich, G.D. Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 2002, 3, 1304–1311, doi:10.1021/bm025603c.
[24]  Mironov, V.; Kasyanov, V.; Zheng, S.X.; Eisenberg, C.; Eisenberg, L.; Gonda, S.; Trusk, T.; Markwald, R.R.; Prestwich, G.D. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials 2005, 26, 7628–7635, doi:10.1016/j.biomaterials.2005.05.061. 16023201
[25]  Jha, A.K.; Xu, X.; Duncan, R.L.; Jia, X. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 2011, 32, 2466–2478, doi:10.1016/j.biomaterials.2010.12.024.
[26]  Huang, Y.; Onyeri, S.; Siewe, M.; Moshfeghian, A.; Madihally, S.V. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 2005, 26, 7616–7627, doi:10.1016/j.biomaterials.2005.05.036.
[27]  Leipzig, N.D.; Wylie, R.G.; Kim, H.; Shoichet, M.S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 2011, 32, 57–64, doi:10.1016/j.biomaterials.2010.09.031.
[28]  Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2004, 12, 41–57, doi:10.1080/10717540590889781.
[29]  Gerrit, B. Chitosans for gene delivery. Adv. Drug. Deliv. Rev. 2001, 52, 145–150, doi:10.1016/S0169-409X(01)00198-3.
[30]  Vieira, E.F.; Cestari, A.R.; Airoldi, C.; Loh, W. Polysaccharide-based hydrogels: Preparation, characterization, and drug interaction behaviour. Biomacromolecules 2008, 9, 1195–1199, doi:10.1021/bm7011983.
[31]  Cheng, N.; Cao, X. Photosensitive chitosan to control cell attachment. J. Colloid. Interface. Sci. 2011, 361, 71–78, doi:10.1016/j.jcis.2011.05.045.
[32]  Yamaguchi, R.; Arai, Y.J.; Itoh, T.; Hirano, S. Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohyd. Res. 1981, 88, 172–175, doi:10.1016/S0008-6215(00)84614-5.
[33]  Freier, T.; Koh, H.S.; Kazazian, K.; Shoichet, M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 2005, 26, 5872–5878, doi:10.1016/j.biomaterials.2005.02.033.
[34]  Monteiro, O.J.; Airoldi, C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128, doi:10.1016/S0141-8130(99)00068-9.
[35]  Mi, F.L.; Sung, H.W.; Shyu, S.S. Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J. Polym. Sci. A-Polym. Chem. 2000, 38, 2804–2814, doi:10.1002/1099-0518(20000801)38:15<2804::AID-POLA210>3.0.CO;2-Y.
[36]  Zhong, C.; Wu, J.; Reinhart-King, C.A.; Chu, C.C. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater. 2010, 6, 3908–3918, doi:10.1016/j.actbio.2010.04.011.
[37]  Finotelli, P.V.; Sampaio, D.A.; Morales, M.A.; Rossi, A.M. Ca alginate as scaffold for iron oxide nanoparticles synthesis. Braz. J. Chem. Eng. 2008, 25, 759–764, doi:10.1590/S0104-66322008000400013.
[38]  Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53, doi:10.1016/S0142-9612(98)00107-0. 9916770
[39]  Cha, C.; Kim, E.S.; Kim, I.W.; Kong, H. Integrative deign of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials 2011, 32, 2695–2703, doi:10.1016/j.biomaterials.2010.12.038. 21262532
[40]  Huebsch, N.; Arany, P.R.; Mao, A.S.; Shvartsman, D.; Ali, O.A.; Bencherif, S.A.; Rivera, F.J.; Mooney, D.J. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010, 9, 518–526, doi:10.1038/nmat2732.
[41]  Müller, W.E. The origin of metazoan complexity: porifera as integrated animals. Integer. Comp. Biol. 2003, 43, 3–10, doi:10.1093/icb/43.1.3.
[42]  Parkinson, J.; Brass, A.; Canova, G.; Brechet, Y. The mechanical properties of simulated collagen fibrils. J. Biomech. 1997, 30, 549–554, doi:10.1016/S0021-9290(96)00151-0.
[43]  Di Lullo, G.A.; Sweeney, S.M.; K?rkk?, J.; Leena, A.K.; Antonio, J.S. apping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type i collagen. J. Biol. Chem. 2002, 277, 4223–4231, doi:10.1074/jbc.M110709200. 11704682
[44]  Zhang, Z.; Li, G.Y.; Shi, B.L. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 2006, 90, 23–28.
[45]  Lee, S.H.; Moon, J.J.; Miller, J.S.; West, J.L. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials 2007, 28, 3163–3170, doi:10.1016/j.biomaterials.2007.03.004.
[46]  Layman, H.; Spiga, M.G.; Brooks, T.; Pham, S.; Webster, K.A.; Andreopoulos, F.M. The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 2007, 28, 2646–2654, doi:10.1016/j.biomaterials.2007.01.044.
[47]  Lyons, F.G.; Al-Munajjed, A.A.; Kieran, S.M.; Toner, M.E.; Murphy, C.M.; Duffy, G.P.; O’Brien, F.J. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 2010, 31, 9232–9243, doi:10.1016/j.biomaterials.2010.08.056. 20863559
[48]  Wang, L.S.; Chung, J.E.; Chan, P.P.; Kurisawa, M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010, 31, 1148–1157, doi:10.1016/j.biomaterials.2009.10.042. 19892395
[49]  Hern, D.L.; Hubbell, J.A. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 1998, 39, 266–276, doi:10.1002/(SICI)1097-4636(199802)39:2<266::AID-JBM14>3.0.CO;2-B.
[50]  Pelham, R.J.; Wang, Y. Cell locomotion and focal adhesions are regulated by substrate?flexibility. Proc. Nat. Acad. Sci. USA 1997, 94, 13661–13665, doi:10.1073/pnas.94.25.13661.
[51]  Wang, Y.L.; Pelham, R.J. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Mol. Motor. Cytoskelet. 1998, 298, 489–496, doi:10.1016/S0076-6879(98)98041-7.
[52]  Barnard, Z.; Keen, I.; Hill, D.T.; Chirila, T.V.; Harkin, D.G. PHEMA hydrogels modified through the grafting of phosphate groups by atrp support the attachment and growth of human corneal epithelial cells. J. Biomater. Appl. 2008, 23, 147–168, doi:10.1177/0885328207086993.
[53]  Pokharna, H.K.; Zhong, Y.M.; Smith, D.J.; Dunphy, M.J. Copolymers of hydroxyethyl methacrylate with quadrol methacrylate and with various aminoalkyl methacrylamides as fibroblast cell substrata. J. Bioact. Compat. Polym. 1990, 5, 42–52, doi:10.1177/088391159000500105.
[54]  Temenoff, J.S.; Park, H.; Jabbari, E.; Conway, D.E.; Sheffield, T.L.; Ambrose, C.G.; Mikos, A.G. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 2003, 5, 5–10.
[55]  Oh, J.K.; Lee, D.I.; Park, J.M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2009, 34, 1261–1282, doi:10.1016/j.progpolymsci.2009.08.001.
[56]  Stasko, J.; Kalni??, M.; Dzene, A.; Tupureina, V. Poly(vinyl alcohol) hydrogels. Proc. Eston. Acad. Sci. 2009, 58, 63–66, doi:10.3176/proc.2009.1.11.
[57]  Schmedlen, R.H.; Masters, K.S.; West, J.L. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002, 23, 4325–4332, doi:10.1016/S0142-9612(02)00177-1.
[58]  Martens, P.; Holland, T.; Anseth, K.S. Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer 2002, 43, 6093–6100, doi:10.1016/S0032-3861(02)00561-X.
[59]  Mawad, D.; Martens, P.J.; Odell, R.A.; Poole-Warren, L.A. The effect of redox polymerisation on degradation and cell responses to poly(vinyl alcohol) hydrogels. Biomaterials 2007, 28, 947–955, doi:10.1016/j.biomaterials.2006.10.007. 17084445
[60]  Chirila, T.V.; Constablea, I.J.; Crawforda, G.J.; Vijayasekarana, S.; Thompsona, D.E.; Chen, Y.C.; Fletchera, W.A.; Griffin, B.J. Poly(2-hydroxyethyl methacrylate) sponges as implant materials: In vivo and in vitro evaluation of cellular invasion. Biomaterials 1993, 14, 26–38, doi:10.1016/0142-9612(93)90072-A.
[61]  Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118, doi:10.1038/185117a0.
[62]  Casadio, Y.S.; Brown, D.H.; Chirila, T.V.; Kraatz, H.B.; Baker, M.V. Biodegradation of poly(2-hydroxyethyl methacrylate) (phema) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents. Biomacromolecules 2010, 11, 2949–2959, doi:10.1021/bm100756c.
[63]  Ferruti, P.; Marchisio, M.A.; Barbucci, R. Synthesis, physico-chemical properties and biomedical applications of poly(amidoamine)s. Polymer 1985, 26, 1336–1348, doi:10.1016/0032-3861(85)90309-X.
[64]  Jacchetti, E.; Emilitri, E.; Rodighiero, S.; Indrieri, M.; Gianfelice, A.; Lenardi, C.; Podestà, A.; Ranucci, E.; Ferruti, P.; Milani, P. Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture. J. Nanobiotechnol. 2008, 6, 14, doi:10.1186/1477-3155-6-14.
[65]  Lopez, A.I.; Reins, R.Y.; McDermott, A.M.; Trautner, B.W.; Cai, C.Z. Antibacterial activity and cytotoxicity of pegylated poly(amidoamine) dendrimers. Mol. Biosyst. 2009, 5, 1148–1156, doi:10.1039/b904746h.
[66]  Chen, J.; Wu, C.; Oupicky?, D. Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules 2009, 10, 2921–2927, doi:10.1021/bm900724c.
[67]  Emilitri, E.; Paolo, F.; Rita, A.; Elisabetta, R.; Manuela, R.; Luigi, F.; Patrizia, M.; Federica, C.; Cristina, B. Novel amphoteric cystine-based poly(amidoamine)s responsive to redox stimuli. Macromolecules 2007, 40, 4785–4793, doi:10.1021/ma062115e.
[68]  Ferruti, P.; Bianchi, S.; Ranucci, E.; Chiellini, F.; Piras, A.M. Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering. Biomacromolecules 2005, 6, 2229–2235, doi:10.1021/bm050210+.
[69]  Fusco, S.; Borzacchiello, A.; Netti, P.A. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J. Bioact. Compat. Polym. 2006, 21, 149–164, doi:10.1177/0883911506063207.
[70]  Bromberg, L.E.; Ron, E.S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 1998, 31, 197–221, doi:10.1016/S0169-409X(97)00121-X.
[71]  Lindman, B.; Alexandridis, P. Amphiphilic Block Copolymers Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000.
[72]  Cohn, D.; Lando, G.; Sosnik, A.; Garty, S.; Levi, A. PEO-PPO-PEO—Based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Biomaterials 2006, 27, 1718–1727, doi:10.1016/j.biomaterials.2005.10.035. 16310849
[73]  Neff, J.A.; Caldwell, K.D.; Tresco, P.A. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J. Biomed. Mater. Res. 1998, 40, 511–519, doi:10.1002/(SICI)1097-4636(19980615)40:4<511::AID-JBM1>3.0.CO;2-I.
[74]  Vanderhooft, J.L.; Mann, B.K.; Prestwich, G.D. synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules 2007, 8, 2883–2889, doi:10.1021/bm0703564.
[75]  Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 1996, 12, 697–715, doi:10.1146/annurev.cellbio.12.1.697.
[76]  H?lig, P.; Bach, M.; V?lkel, T.; Thomas Nahde, T.; Hoffmann, S.; Müller, R.; Roland, E.; Kontermann, R.E. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng. Des. Sel. 2004, 17, 433–441, doi:10.1093/protein/gzh055.
[77]  Ford, M.C. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc. Nat. Acad. Sci. USA 2006, 103, 2512–2517, doi:10.1073/pnas.0506020102.
[78]  Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug. Deliv. Rev. 2002, 54, 3–12, doi:10.1016/S0169-409X(01)00239-3.
[79]  Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211–1218, doi:10.1016/j.biomaterials.2004.04.024.
[80]  Tse, J.R.; Engler, A.J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell. Biol. 2001, 47, 1–16.
[81]  Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Nat. Acad. Sci. USA 2010, 107, 17894–17898, doi:10.1073/pnas.1006911107. 20921374
[82]  Duan, S.F.; Zhu, W.; Yu, L.; Ding, J.D. Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel. Chin. Sci. Bull. 2005, 50, 1093–1096, doi:10.1360/982004-459.
[83]  Park, H.; Guo, X.; Temenoff, J.S.; Tabata, Y.; Caplan, A.I.; Kasper, F.K.; Antonios, G.; Mikos, A.G. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 2009, 10, 541–546, doi:10.1021/bm801197m. 19173557
[84]  Wu, D.C.; Loh, X.J.; Wu, Y.L.; Lay, C.L.; Liu, Y. “Living” controlled in situ gelling systems: thiol-disulfide exchange method toward tailor-made biodegradable hydrogels. J. Am. Chem. Soc. 2010, 132, 15140–15143, doi:10.1021/ja106639c. 20929223
[85]  Weiss, P.; Vinatier, C.; Guicheux, J.; Grimandi, G.; Daculsi, G. Self setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng. Mater. 2004, 254-256, 1107–1110, doi:10.4028/www.scientific.net/KEM.254-256.1107.
[86]  Fatimi, A.; Tassin, J.F.; Quillard, S.; Axelos, M.V.; Weiss, P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 2008, 29, 533–543, doi:10.1016/j.biomaterials.2007.10.032. 17996292
[87]  Smidsr?d, O.; Skjak-Brk, G. Alginate as immobilization matrix for cells. Trend. Biotech. 1990, 8, 71–78, doi:10.1016/0167-7799(90)90139-O.
[88]  Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319, doi:10.1126/science.1962191. 1962191
[89]  Zhang, S.; Greenfield, M.A.; Mata, A.; Palmer, L.C.; Bitton, R.; Mantei, J.R.; Conrado Aparicio, C.; Cruz, M.O.; Stupp, S.I. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 2010, 9, 594–601, doi:10.1038/nmat2778. 20543836
[90]  Salick, D.A.; Pochan, D.J.; Schneider, J.P. Design of an injectable beta-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus. Adv. Mater. 2009, 21, 4120–4123, doi:10.1002/adma.200900189.
[91]  Hirst, A.R.; Roy, S.; Arora, M.; Das, A.K.; Hodson, N.; Murray, P.; Marshall, S.; Javid, N.; Sefcik, J.; Boekhoven, J.; van Esch, J.H.; Santabarbara, S.; Neil, T.; Hunt, N.T.; Ulijn, R.V. Biocatalytic induction of supramolecular order. Nat. Chem. 2011, 2, 1089–1094.
[92]  Langer, R.; Peppas, N.A. advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003, 49, 2990–3006, doi:10.1002/aic.690491202.
[93]  McBath, R.A.; Shipp, D.A. Swelling and degradation of hydrogels synthesized with degradable poly(beta-amino ester) crosslinkers. Polym. Chem. 2010, 1, 860–865, doi:10.1039/c0py00074d.
[94]  Tasdelen, B.; Apohan, N.K.; Olgun Güven, O.; Baysal, B.M. Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs. J. Appl. Polym. Sci. 2004, 91, 911–915, doi:10.1002/app.13223.
[95]  Tan, H.; Chu, C.R.; Payne, K.A.; Marra, K.G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, 2499–2506, doi:10.1016/j.biomaterials.2008.12.080.
[96]  Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, A.; Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 2007, 315, 487–490, doi:10.1126/science.1135516. 17255505
[97]  Xu, X.D.; Zhang, X.Z.; Yang, J.; Cheng, S.X.; Zhuo, R.X.; Huang, Y.Q. Strategy to introduce a pendent micellar structure into poly(N-isopropylacrylamide) hydrogels. Langmuir 2007, 23, 4231–4236, doi:10.1021/la063485z. 17348696
[98]  Braet, F.; De Zanger, R.; Wisse, E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: A study on hepatic endothelial cells. J. Microsc. 1997, 186, 84–87, doi:10.1046/j.1365-2818.1997.1940755.x. 9159923
[99]  Xu, C. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877–886, doi:10.1016/S0142-9612(03)00593-3.
[100]  Boyde, A.; Jones, S.J. Back-scattered electron imaging of skeletal tissues. Metab. Bone. Dis. Relat. Res. 1983, 5, 145–50, doi:10.1016/0221-8747(83)90016-4.
[101]  Boyde, A.; Lovicar, L.; Zamecnik, J. Combining confocal and bse sem imaging for bone block surfaces. Eur. Cell. Mater. 2005, 9, 33–38. 15852236
[102]  Rocchietta, I.; Dellavia, C.; Nevins, M.; Simion, M. Bone regenerated via rhpdgf-bb and a deproteinized bovine bone matrix: backscattered electron microscopic element analysis. Int. J. Periodontics. Restor. Den. 2007, 27, 539–545.
[103]  Kingsmill, V.J.; Boyde, A. Mineralisation density of human mandibular bone: Quantitative backscattered electron image analysis. Amer. J. Anat. 1998, 192, 245–256, doi:10.1046/j.1469-7580.1998.19220245.x.
[104]  Pang, X.A.; Chu, C.C. Synthesis, characterization and biodegradation of poly(ester amide)s based hydrogels. Polymer 2010, 51, 4200–4210, doi:10.1016/j.polymer.2010.07.015.
[105]  Zhang, J.X.; Ma, P.X. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano. Today 2010, 5, 337–350, doi:10.1016/j.nantod.2010.06.011.
[106]  Mosmann, T. Rapid colorimetric assay for cellular growth and survival—Application to proliferation and cyto-toxicity assays. J. Immunol. Method. 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[107]  Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an aqueous soluble tetrazolium formazan assay for cell-growth assays in culture. Cancer. Commun. 1991, 3, 207–212. 1867954
[108]  Lau, T.T.; Wang, C.M.; Wang, D.A. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos. Sci. Technol. 2010, 70, 1909–1914, doi:10.1016/j.compscitech.2010.05.015.
[109]  Zhang, J.; Skardal, A.; Prestwich, G.D. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials 2008, 29, 4521–4531, doi:10.1016/j.biomaterials.2008.08.008. 18768219
[110]  Hunt, N.C.; Smith, A.M.; Gbureck, U.; Shelton, R.M.; Grover, L.M. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater. 2010, 6, 3649–3656, doi:10.1016/j.actbio.2010.03.026.
[111]  Sahoo, S.; Chung, C.; Khetan, S.; Burdick, J.A. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules 2008, 9, 1088–1092, doi:10.1021/bm800051m.
[112]  Bueno, E.M.; Glowacki, J. Cell-free and cell-based approaches for bone regeneration. Nat. Rev. Rheumatol. 2009, 5, 685–697, doi:10.1038/nrrheum.2009.228.
[113]  El-Ghannam, A. Bone reconstruction: From bioceramics to tissue engineering. Expert Rev. Med. Devices 2005, 2, 87–101, doi:10.1586/17434440.2.1.87.
[114]  Wong, V.W.; Rustad, K.C.; Longaker, M.T.; Gurtner, G.C. Tissue engineering in plastic surgery: A review. Plast. Reconstr. Surg. 2010, 126, 858–868, doi:10.1097/PRS.0b013e3181e3b3a3.
[115]  Salinas, C.N.; Anseth, K.S. Mesenchymal stem cells for craniofacial tissue regeneration: Designing hydrogel delivery vehicles. J. Dent. Res. 2009, 88, 681–692, doi:10.1177/0022034509341553.
[116]  Bakhtiari, L.; Rezaie, H.R.; Hosseinalipour, S.M.; Shokrgozar, M.A. Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram. Int. 2010, 36, 2421–2426, doi:10.1016/j.ceramint.2010.07.012.
[117]  Guvendiren, M.; Burdick, J.A. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 2010, 31, 6511–6518, doi:10.1016/j.biomaterials.2010.05.037.
[118]  Pritchard, C.D.; O’Shea, T.M.; Siegwart, D.J.; Calo, E.; Anderson, D.G.; Reynolds, F.M.; Thomas, J.A.; Slotkin, J.R.; Woodard, E.J.; et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 2011, 32, 587–597, doi:10.1016/j.biomaterials.2010.08.106. 20880573
[119]  Discher, D.E.; Janmey, P.; Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143, doi:10.1126/science.1116995. 16293750
[120]  Mei, Y.; Saha, K.; Bogatyrev, S.R.; Yang, J.; Hook, A.L.; Kalcioglu, I.Z.; Cho, S.W.; Mitalipova, M.; Pyzocha, N.; Rojas, F.; et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 2010, 9, 768–778, doi:10.1038/nmat2812. 20729850
[121]  Burdick, J.A.; Anseth, K.S. Photoencapsulation of osteoblasts in injectable rgd-modified peg hydrogels for bone tissue engineering. Biomaterials 2002, 23, 4315–4323, doi:10.1016/S0142-9612(02)00176-X.
[122]  Chatterjee, K.; Lin-Gibson, S.; Wallace, W.E.; Parekh, S.H.; Lee, Y.J.; Cicerone, M.T.; Young, M.F.; Simon, C.G. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 2010, 31, 5051–5062, doi:10.1016/j.biomaterials.2010.03.024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133