全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2012 

Hot Deformation Mechanisms in AZ31 Magnesium Alloy Extruded at Different Temperatures: Impact of Texture

DOI: 10.3390/met2030292

Keywords: AZ31 magnesium alloy, extrusion temperature, fiber texture, processing maps, kinetic analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The hot deformation characteristics of AZ31 magnesium alloy rod extruded at temperatures of 300 °C, 350 °C and 450 °C have been studied in compression. The extruded material had a fiber texture with?parallel to the extrusion axis. When extruded at 450 °C, the texture was less intense and the direction moved away from the extrusion axis. The processing maps for the material extruded at 300 °C and 350 °C are qualitatively similar to the material with near-random texture (cast-homogenized) and exhibited three dynamic recrystallization (DRX) domains. In domains #1 and #2, prismatic slip is the dominant process and DRX is controlled by lattice self-diffusion and grain boundary self-diffusion, respectively. In domain #3, pyramidal slip occurs extensively and DRX is controlled by cross-slip on pyramidal slip systems. The material extruded at 450 °C exhibited two domains similar to #1 and #2 above, which moved to higher temperatures, but domain #3 is absent. The results are interpreted in terms of the changes in fiber texture with extrusion temperature. Highly intense?texture, as in the rod extruded at 350 °C, will enhance the occurrence of prismatic slip in domains #1 and #2 and promotes pyramidal slip at temperatures >450 °C (domain #3).

References

[1]  Kainer, K.U.; Dieringa, H.; Dietzel, W.; Hort, N.; Blawert, C. The use of magnesium alloys: Past, present and future. In Magnesium Technology in the Global Age, Proceedings of the International Symposium on Magnesium Technology in the Global Age, Montreal, PQ, Canada, 1–4 October 2006; Pekguleryuz, M.O., Mackenzie, L.W.F., Eds.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, Quebec, Canada, 2006; pp. 3–19.
[2]  Beer, A.G.; Barnett, M.R. Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn. Mater. Sci. Eng. A 2006, 423, 292–299.
[3]  Yi, S.B.; Zaefferer, S.; Brokmeier, H.G. Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures. Mater. Sci. Eng. A 2006, 424, 275–281, doi:10.1016/j.msea.2006.03.022.
[4]  Tian, S.; Wang, L.; Sohn, K.Y.; Kim, K.H.; Xu, Y.; Hu, Z. Microstructure evolution and deformation features of AZ31 Mg-alloy during creep. Mater. Sci. Eng. A 2006, 415, 309–316, doi:10.1016/j.msea.2005.10.015.
[5]  Murai, T.; Matsuoka, S.I.; Miyamoto, S.; Oki, Y. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. J. Mater. Process. Tech. 2003, 141, 207–212, doi:10.1016/S0924-0136(02)01106-8.
[6]  Barnett, M.R.; Keshavarz, Z.; Beer, A.G.; Atwell, D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 2004, 52, 5093–5103, doi:10.1016/j.actamat.2004.07.015.
[7]  Huang, C.C.; Huang, J.C.; Lin, Y.K.; Hwang, Y.M. Basal-texture induced low formability during room temperature hydroforming of fine-grained AZ31 Mg tubes. Mater. Trans. 2004, 45, 3142–3149, doi:10.2320/matertrans.45.3142.
[8]  Chino, Y.; Sassa, K.; Kamiya, A.; Mabuchi, M. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet. Mater. Sci. Eng. A 2006, 441, 349–356, doi:10.1016/j.msea.2006.08.038.
[9]  Uematsu, Y.; Tokaji, K.; Kamakura, M.; Uchida, K.; Shibata, H.; Bekku, N. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Mater. Sci. Eng. A 2006, 434, 131–140, doi:10.1016/j.msea.2006.06.117.
[10]  Watanabe, H.; Takara, A.; Somekawa, H.; Mukai, T.; Higashi, K. Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy. Scripta Mater. 2005, 52, 449–454, doi:10.1016/j.scriptamat.2004.11.011.
[11]  Helis, L.; Okayasu, K.; Fukutomi, H. Microstructure evolution and texture development during high-temperature uniaxial compression of magnesium alloy AZ31. Mater. Sci. Eng. A 2006, 430, 98–103, doi:10.1016/j.msea.2006.04.125.
[12]  Muller, K.B. Direct and Indirect Extrusion of AZ31. In Magnesium Technology 2002, Proceedings of the Symposium jointly sponsored by the Magnesium Committee of the Light Metals Division (LMD) of TMS (The Minerals, Metals & Materials) with the International Magnesium Association, Seattle, WA, USA, 17–21 February 2002; Kaplan, H.J., Ed.; TMS: Warrendale, PA, USA, 2002; pp. 187–192.
[13]  Li, L.; Zhou, J.; Duszczyk, J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion. J. Mater. Process. Tech. 2006, 172, 372–380, doi:10.1016/j.jmatprotec.2005.09.021.
[14]  Lapovok, R.Y.; Barnett, M.R.; Davies, C.H.J. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation. J. Mater. Process. Tech. 2004, 146, 408–414, doi:10.1016/j.jmatprotec.2003.12.003.
[15]  Letzig, D.; Swiostek, J.; Bohlen, J.; Beaven, P.A. Extrusion of AZ-Series Magnesium alloys. In Magnesium Technology in the Global Age, Proceedings of the International Symposium on Magnesium Technology in the Global Age, Montreal, PQ, Canada, 1–4 October 2006; Pekguleryuz, M.O., Mackenzie, L.W.F., Eds.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, Quebec, Canada, 2006; pp. 569–580.
[16]  Prasad, Y.V.R.K.; Rao, K.P. Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg-3Al-1Zn alloy plate. Mater. Sci. Eng. A 2006, 432, 170–177, doi:10.1016/j.msea.2006.05.159.
[17]  Wu, X.; Liu, Y. Superplasticity of coarse-grained magnesium alloy. Scripta Mater. 2002, 46, 269–274, doi:10.1016/S1359-6462(01)01234-9.
[18]  Tan, J.C.; Tan, M.J. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater. Sci. Eng. A 2003, 339, 81–89, doi:10.1016/S0921-5093(02)00097-7.
[19]  Prasad, Y.V.R.K.; Rao, K.P. Hot workability, microstructural control and rate-controlling mechanisms in cast-homogenized AZ31 magnesium alloy. Adv. Eng. Mater. 2009, 11, 182–188, doi:10.1002/adem.200800204.
[20]  Jonas, J.J.; Sellars, C.M.; Tegart, W.J.M. Strength and structure under hot-working conditions. Metall. Rev. 1969, 14, 1–24, doi:10.1179/095066069790138056.
[21]  McQueen, H.J. Hot Workability of Mg Alloys-Insights from Al Alloys. In Magnesium Technology in the Global Age, Proceedings of the International Symposium on Magnesium Technology in the Global Age, Montreal, PQ, Canada, 1–4 October 2006; Pekguleryuz, M.O., Mackenzie, L.W.F., Eds.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2006; pp. 399–420.
[22]  Spigarelli, S.; Mehtedi, M.El.; Evangelista, E.; Kaneko, J. High temperature plastic deformation of a heat-treated AZ31 magnesium alloy. Metall. Sci. Tech. 2005, 23, 11–17.
[23]  McQueen, H.J.; Myshleyaev, M.; Mwembala, A.; Konopleva, E.V. Hot Working Characteristics of Mg-2.8Al-0.9Zn. In Magnesium Alloys and Their Applications; Proceedings of the International Conference and Exhibition Magnesium Alloys and their Applications, Wolfsburg, Germany, 28–30 April 1998; Mordike, B.L., Kainer, K.U., Eds.; Werkstoff Info-Gesellschaft: Frankfurt, Germany, 1998; pp. 201–208.
[24]  Liu, W.J.; Kao, V.; Essadiqi, E.; Elwazri, A.; Yue, S.; Verma, R. Dynamic recrystallization of AZ31 magnesium alloy during torsion deformation at elevated temperatures. In Magnesium Technology 2004, Proceedings of the Symposium held during the 2004 TMS Annual Meeting, Charlotte, NC, USA, 14–18 March 2004; Luo, A.A., Ed.; TMS: Warrendale, PA, USA, 2004; pp. 73–78.
[25]  Chabbi, L.; Lehnert, W. Hot and cold forming behaviour of Mg-materials. In Magnesium Alloys and Their Applications, Proceedings of the International Conference and Exhibition Magnesium Alloys and their Applications, Wolfsburg, Germany, 28–30 April 1998; Mordike, B.L., Kainer, K.U., Eds.; Werkstoff Info-Gesellschaft: Frankfurt, Germany, 1998; pp. 313–317.
[26]  Beer, A.G.; Barnett, M.R. The hot working flow stress and microstructure in magnesium AZ31. In Magnesium Technology 2002, Proceedings of the Symposium jointly sponsored by the Magnesium Committee of the Light Metals Division (LMD) of TMS (The Minerals, Metals & Materials) with the International Magnesium Association, Seattle, WA, USA, 17–21 February 2002; Kaplan, H.J., Ed.; TMS: Warrendale, PA, USA, 2002; pp. 193–198.
[27]  Prasad, Y.V.R.K.; Seshacharyulu, T. Modeling of hot deformation for microstructural control. Int. Mater. Rev. 1998, 43, 243–258, doi:10.1179/095066098790105618.
[28]  Prasad, Y.V.R.K.; Sasidhara, S. Hot Working Guide: A Compendium of Processing Maps; ASM International: Novelty, OH, USA, 1997.
[29]  Prasad, Y.V.R.K. Processing maps: A status report. J. Mater. Eng. Perform. 2003, 12, 638–645, doi:10.1361/105994903322692420.
[30]  Ziegler, H. In Progress in Solid Mechanics; Sneddon, I.N., Hill, R., Eds.; John Wiley: New York, NY, USA, 1965; pp. 91–193.
[31]  Prigogine, I. Time, structure, and fluctuations. Science 1978, 201, 777–785.
[32]  Wang, Y.; Zhang, Y.; Zeng, X.; Ding, W. Characterization of dynamic recrystallization in as-homogenized Mg-Zn-Y-Zr alloy using processing map. J. Mater. Sci. 2006, 41, 3603–3608.
[33]  Dzwonczyk, J.; Prasad, Y.V.R.K.; Hort, N.; Kainer, K.U. Enhancement of workability in AZ31 alloy-processing maps: Part I, cast material. Adv. Eng. Mater. 2006, 8, 966–973.
[34]  Wang, C.Y.; Wang, X.J.; Chang, H.; Wu, K.; Zheng, M.Y. Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci. Eng. A 2007, 464, 52–58, doi:10.1016/j.msea.2007.03.003.
[35]  Slooff, F.A.; Dwonczyk, J.S.; Zhou, J.; Duszczyk, J.; Katgerman, L. Hot workability analysis of extruded AZ magnesium alloys with processing maps. Mater. Sci. Eng. A 2010, 527, 735–744, doi:10.1016/j.msea.2009.08.070.
[36]  Chen, Z.; Li, Z.; Yu, C. Hot deformation behavior of an extruded Mg-Li-Zn-RE alloy. Mater. Sci. Eng. A 2011, 528, 961–966, doi:10.1016/j.msea.2010.09.042.
[37]  Liu, R.; Cao, W.; Fan, T.; Zhang, C.; Zhang, D. Development of processing maps for 3 vol.% TiCp/AZ91D composites material. Mater. Sci. Eng. A 2010, 527, 4687–4693.
[38]  Li, L.; Zhang, X. Hot compression deformation behavior and processing parameters of a cast Mg-Gd-Y-Zr alloy. Mater. Sci. Eng. A 2011, 528, 1396–1401, doi:10.1016/j.msea.2010.10.026.
[39]  Li, H.Z.; Wang, H.J.; Li, Z.; Liu, C.M.; Liu, H.T. Flow behavior and processing map of as-cast Mg-10Gd-4.8Y-2Zn-0.6Zr alloy. Mater. Sci. Eng. A 2010, 528, 154–160.
[40]  Rao, K.P.; Prasad, Y.K.; Dharmendra, C.; Hort, N.; Kainer, K.U. Compressive strength and hot deformation behavior of TX32 magnesium alloy with 0.4% Al and 0.4% Si additions. Mater. Sci. Eng. A 2011, 528, 6964–6970.
[41]  Rao, K.P.; Prasad, Y.K.; Hort, N.; Kainer, K.U. High temperature deformation mechanisms and processing map for hot working of cast-homogenized Mg-3Sn-2Ca alloy. Mater. Sci. Forum 2010, 638–642, 3616–3621.
[42]  Prasad, Y.V.R.K.; Rao, K.P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 °C. Mater. Sci. Eng. A 2005, 391, 141–150, doi:10.1016/j.msea.2004.08.049.
[43]  Brokmeier, H.G.; Gunther, A.; Yi, S.B.; Ye, W.; Lippmann, T.; Garbe, U. Investigation of local textures in extruded magnesium by synchrotron radiation. Adv. X Ray Anal. 2003, 46, 151–156.
[44]  Sastry, D.H.; Prasad, Y.V.R.K.; Vasu, K.I. On the stacking fault energies of some close-packed hexagonal metals. Scripta Metall. 1969, 3, 927–929, doi:10.1016/0036-9748(69)90243-9.
[45]  Morris, J.R.; Scharff, J.; Ho, K.M.; Turner, D.E.; Ye, Y.Y.; Yoo, M.H. Prediction of a {1122} hcp stacking fault using a modified generalized stacking-fault calculation. Philos. Mag. A 1997, 76, 1065–1077, doi:10.1080/01418619708200015.
[46]  Frost, H.J.; Ashby, M.F. Deformation Mechanism Maps; Pergamon Press: Oxford, UK, 1982.
[47]  Taylor, A. X-ray Metallography; John Wiley & Sons Inc: New York, NY, USA, London, UK, 1961; pp. 44–572.
[48]  Prasad, Y.V.R.K.; Rao, K.P. Hot deformation mechanisms and microstructural control in high-temperature extruded AZ31 magnesium alloy. Adv. Eng. Mater. 2007, 9, 558–565.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133