Computational models based on the finite element method and linear or nonlinear fracture mechanics are herein proposed to study the mechanical response of functionally designed cellular components. It is demonstrated that, via a suitable tailoring of the properties of interfaces present in the meso- and micro-structures, the tensile strength can be substantially increased as compared to that of a standard polycrystalline material. Moreover, numerical examples regarding the structural response of these components when subjected to loading conditions typical of cutting operations are provided. As a general trend, the occurrence of tortuous crack paths is highly favorable: stable crack propagation can be achieved in case of critical crack growth, whereas an increased fatigue life can be obtained for a sub-critical crack propagation.
References
[1]
Langdon, T.G. The processing of ultrafine-grained materials through the application of severe plastic deformation. J. Mater. Sci. 2007, 42, 3388–3397, doi:10.1007/s10853-006-1475-8.
[2]
Fang, Z.K.; Griffo, A.; White, B.; Lockwood, G.; Belnap, D.; Hilmas, G.; Bitler, J. Fracture resistant super hard materials and hardmetals composite with functionally graded microstructure. Int. J. Refract. Met. Hard Mater. 2001, 19, 453–459, doi:10.1016/S0263-4368(01)00031-2.
[3]
Abisset, E.; Daghia, F.; Ladevèze, P. On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Compos. Part A 2011, 42, 1515–1524, doi:10.1016/j.compositesa.2011.07.004.
[4]
Carpinteri, A.; Paggi, M. Numerical analysis of fracture mechanisms and failure modes in bi-layered structural components. Finite Elem. Anal. Des. 2007, 43, 941–953, doi:10.1016/j.finel.2007.06.003.
[5]
Functional design puts the bite into hard and refractory metals. Met. Powder Rep. 2003, 58, 20–25.
[6]
Park, S.-J.; Seo, M.-K. Interface Science and Composites; Acedemic Press: New York, NY, USA, 2011.
[7]
De Santis, R.; Ambrosio, L.; Mollica, F.; Netti, P.; Nicolais, L. Mechanical properties of human mineralized connective tissues. In Modeling of Biological Materials; Mollica, F., Preziosi, L., Rajagopal, K.R., Eds.; Birkh?user: Boston, MA, USA, 2007; chapter 6.
[8]
Carpinteri, A. Cusp catastrophe interpretation of fracture instability. J. Mech. Phys. Solids 1989, 37, 567–582, doi:10.1016/0022-5096(89)90029-X.
[9]
Carpinteri, A. Softening and snap-back instability in cohesive solids. Int. J. Numer. Methods Eng. 1989, 28, 1521–1537, doi:10.1002/nme.1620280705.
[10]
Corigliano, A.; Allix, O. Some aspects of interlaminar degradation in composites. Comput. Methods Appl. Mech. Eng. 2000, 185, 203–224, doi:10.1016/S0045-7825(99)00260-1.
[11]
Mroz, Z.; Giambanco, G. An interface model for analysis of deformation behaviour of discontinuities. Int. J. Numer. Anal. Methods Geomech. 1996, 20, 1–33, doi:10.1002/(SICI)1096-9853(199601)20:1<1::AID-NAG799>3.0.CO;2-L.
[12]
Giambanco, G.; Rizzo, S.; Spallino, R. Numerical of masonry structures via interface models. Comput. Methods Appl. Mech. Eng. 2001, 190, 6493–6511, doi:10.1016/S0045-7825(01)00225-0.
[13]
Giambanco, G.; Turetta, T.; Borino, G. Elasto-plastic damaging interface model for the description of decohesion processes in composite structures. In Proceedings of the International Conference of Composites in Constructions CCC-2003, Cosenza, Italy, 16–19 September 2003.
[14]
Carpinteri, A.; Paggi, M.; Zavarise, G. Snap-back instability in micro-structured composites and its connection with superplasticity. Strength Fract. Complex. 2005, 3, 61–72.
[15]
Rigali, M.J.; Fulcher, M.R. Fibrous Monolith Wear Resistant Components for the Mining Industry; Advanced Ceramics Research: Tucson, AZ, USA, 2003; 3292 East Hemisphere Loop Dr., 85706-5013. Available online: http://www.osti.gov/bridge/purl.cover.jsp?purl=/829541-jVi73L/native (accessed on 29 November 2011).
[16]
Paggi, M.; Wriggers, P. A nonlocal cohesive zone model for finite thickness interfaces—Part I: Mathematical formulation and validation with molecular dynamics. Comput. Mater. Sci. 2011, 50, 1625–1633, doi:10.1016/j.commatsci.2010.12.024.
[17]
Paggi, M.; Wriggers, P. A nonlocal cohesive zone model for finite thickness interfaces—Part II: FE implementation and application to polycrystalline materials. Comput. Mater. Sci. 2011, 50, 1634–1643, doi:10.1016/j.commatsci.2010.12.021.
[18]
Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2000.
[19]
Viola, E.; Piva, A. Plane strain interfacial fracture analysis of a biomaterial incompressible body. Eng. Fract. Mech. 1981, 15, 131–142, doi:10.1016/0013-7944(81)90112-0.
[20]
Erdogan, F.; Sih, G.C. On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 1963, 85, 1–7, doi:10.1115/1.3656517.
[21]
Piva, A.; Viola, E. Biaxial load effects on a crack between dissimilar media. Eng. Fract. Mech. 1980, 13, 143–174, doi:10.1016/0013-7944(80)90049-1.
[22]
He, M.-Y.; Hutchinson, J.W. Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 1989, 25, 1053–1067, doi:10.1016/0020-7683(89)90021-8.
[23]
Gupta, G.D. Strain Energy release rate for mixed mode crack problem. In Proceedings of the American Society of Mechanical Engineers, Winter Annual Meeting, New York, NY, USA, 5–10 December 1976; 8 WA/PVP-7.
[24]
He, M.-Y.; Evans, A.G.; Hutchinson, J.W. Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 1994, 31, 3443–3455, doi:10.1016/0020-7683(94)90025-6.
[25]
Wawrzynek, P.A.; Ingraffea, A.R. Interactive finite element analysis of fracture processes: An integrated approach. Theor. Appl. Fract. Mech. 1987, 8, 137–150, doi:10.1016/0167-8442(87)90007-3.
[26]
Wawrzynek, P.A.; Ingraffea, A.R. Discrete Modeling of Crack Propagation: Theoretical Aspects and Implementation Issues in Two and Three Dimensions; School of Civil and Environmental Engineering, Cornell University: Ithaca, NY, USA, 1991; Technical Report 91-5.
[27]
Wang, C.H. Fracture of interface cracks under combined loading. Eng. Fract. Mech. 1997, 56, 77–86, doi:10.1016/S0013-7944(96)00111-7.