全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2012 

Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

DOI: 10.3390/met2010056

Keywords: martensitic transformation, UFG, cyclic loading, AISI 304L, stainless steel, equal channel angular pressing, tensile test

Full-Text   Cite this paper   Add to My Lib

Abstract:

The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

References

[1]  Roth, I.; Kübbeler, M.; Krupp, U.; Christ, H.-J.; Fritzen, C.-P. Crack initiation and short crack growth in metastable austenitic stainless steel in the high cycle fatigue regime. Procedia Eng. 2010, 2, 941–948.
[2]  Hamada, A.S.; Karjalainen, L.P.; Ventaka Surya, P.K.C.; Misra, R.D.K. Fatigue behavior of ultrafine-grained and coarse-grained Cr-Ni austenitic stainless steel. Mater. Sci. Eng. A 2011, 528, 3890–3896.
[3]  Reynolds, A.P.; Tang, W.; Gnaupel-Herold, T.; Prask, H. Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scr. Mater. 2003, 48, 1289–1294, doi:10.1016/S1359-6462(03)00024-1.
[4]  De Backer, F.; Schoss, V.; Maussner, G. Investigation on the evaluation of the residual fatigue life-time in austenitic stainless-steel. Nuclear Eng. Des. 2001, 206, 201–219.
[5]  Tomimura, K.; Takaki, S.; Tokunaga, Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 1991, 31, 1431–1437.
[6]  Takaki, S.; Tomimura, K.; Ueda, S. Effect of pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel. ISIJ Int. 1994, 34, 522–527.
[7]  Huang, C.X.; Yang, G.; Gao, Y.L.; Wu, S.D.; Zhang, Z.F. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP. Mater. Sci. Eng. A 2008, 485, 643–650.
[8]  Segal, V.M. The method was first disclosed in the Invention Certificate of the USSR. No. 575,892, 22 October 1974.
[9]  Segal, V.M.; Reznikov, V.I.; Drobyshevskiy, A.E.; Kopylov, V.I. Plastic metal working by simple shear. Russ. Metall. 1981, 1, 115–123.
[10]  Valiev, R.Z.; Alexandrov, I.V.; Zhu, Y.T.; Lowe, T.C. Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 2002, 17, 5–8.
[11]  Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation. JOM J. Miner. Met. Mater. Soc. 2006, 58, 33–39.
[12]  Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progr. Mater. Sci. 2006, 51, 881–981.
[13]  Maier, H.J.; Donth, B.; Bayerlein, M.; Mughrabi, H.; Meier, B.; Kesten, M. Optimierte festigkeitssteigerung eines metastabilen austenitischen stahles durch wechselverformungsinduzierte martensit-umwandlung bei tiefen temperaturen. Z. Metallkd. 1993, 84, 820–826.
[14]  Bayerlein, M.; Christ, H.-J.; Mughrabi, H. Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel. Mater. Sci. Eng. A 1989, 114, L11–L16.
[15]  Bayerlein, M.; Mughrabi, H.; Kesten, M.; Meier, B. Improvement of the strength of a metastable austenitic stainless steel by cyclic deformation-induced martensitic transformation at 103 K. Mater. Sci. Eng. A 1992, 159, 35–41.
[16]  Krupp, U.; Roth, I.; Christ, H.-J.; Kübbeler, M.; Fritzen, C.-P. In situ sem observation and analysis of martensitic transformation during short fatigue crack propagation in metastable austenitic steel. Adv. Eng. Mater. 2010, 12, 255–261, doi:10.1002/adem.200900337.
[17]  Di Shino, A.; Barteri, M.; Kenny, J.M. Fatigue behavior of a high nitrogen austenitic stainless steel as a function of its grain size. J. Mater. Sci. Lett. 2003, 22, 1511–1513.
[18]  Di Shino, A.; Kenny, J.M. Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 2003, 57, 3182–3185.
[19]  Baldus, K. Wechselverformungsverhalten Eines Metastabilen, Austenitischen Edelstahles. Diploma Thesis, University of Siegen, Siegen, Germany, 1995.
[20]  Hamada, A.S.; Karjalainen, L.P. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels. Mater. Sci. Eng. A 2010, 527, 5715–5722.
[21]  Müller-Bollenhagen, C.; Zimmermann, M.; Christ, H.-J. Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite. Int. J. Fatigue 2010, 32, 936–942.
[22]  Krupp, U.; West, C.; Christ, H.-J. Deformation-induced martensite formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content. Mater. Sci. Eng. A 2008, 481-482, 713–717, doi:10.1016/j.msea.2006.12.211.
[23]  Li, Y.J.; Zeng, X.H.; Blum, W. Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater. 2004, 52, 5009–5018.
[24]  May, J.; H?ppel, H.W.; G?ken, M. Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 2005, 53, 189–194.
[25]  Blum, W.; Zeng, X.H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater. 2009, 57, 1966–1974.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133