A deeper understanding of the mechanical behavior of ultra-fine (UF) and nanocrystalline (NC) grained metals is necessary with the growing interest in using UF and NC grained metals for structural applications. The cyclic deformation response and behavior of UF and NC grained metals is one aspect that has been gaining momentum as a major research topic for the past ten years. Severe Plastic Deformation (SPD) materials are often in the spotlight for cyclic deformation studies as they are usually in the form of bulk work pieces and have UF and NC grains. Some well known techniques in the category of SPD processing are High Pressure Torsion (HPT), Equal Channel Angular Pressing (ECAP), and Accumulative Roll-Bonding (ARB). In this report, the literature on the cyclic deformation response and behavior of SPDed metals will be reviewed. The cyclic response of such materials is found to range from cyclic hardening to cyclic softening depending on various factors. Specifically, for SPDed UF grained metals, their behavior has often been associated with the observation of grain coarsening during cycling. Consequently, the many factors that affect the cyclic deformation response of SPDed metals can be summarized into three major aspects: (1) the microstructure stability; (2) the limitation of the cyclic lifespan; and lastly (3) the imposed plastic strain amplitude.
References
[1]
Wang, N.; Wang, Z.; Aust, K.T.; Erb, U. Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. Mater. 1995, 43, 519–528, doi:10.1016/0956-7151(94)00253-E.
[2]
Takeuchi, S. The Mechanism of the inverse hall-petch relation of nanocrystals. Scr. Mater. 2001, 44, 1483–1487, doi:10.1016/S1359-6462(01)00713-8.
[3]
Saada, G. Hall-Petch revisited. Mater. Sci. Eng. A 2005, 400–401, 146–149.
[4]
Zhu, Y.T.; Langdon, T.G. Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials. Mater. Sci. Eng. A 2005, 409, 234–242, doi:10.1016/j.msea.2005.05.111.
[5]
Conrad, N.; Jung, K. Effects of grain size from millimeters to nanometers on the flow stress of metals and compounds. J. Electron. Mater. 2006, 35, 857–861, doi:10.1007/BF02692540.
[6]
Segal, V.M. Materials processing by simple shear. Mater. Sci. A 1995, 197, 157–164, doi:10.1016/0921-5093(95)09705-8.
[7]
Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM J. Miner. Met. Mater. Soc. 2006, 58, 33–39.
[8]
Saito, Y.; Tsuji, N.; Utsunomiya, H.; Sakai, T.; Hong, R.G. Ultra-fine grained bulk aluminum produced by Accumulative Roll-Bonding (ARB) process. Scripta Mater. 1998, 39, 1221–1227.
[9]
Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel ultra-high straining process for bulk materials—Development of the Accumulative Roll-Bonding (ARB) Process. Acta Mater. 1999, 47, 579–583, doi:10.1016/S1359-6454(98)00365-6.
[10]
Valiev, R.Z.; Karsilnikov, N.A.; Tsenev, N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 1991, 137, 35–40.
[11]
Galeev, R.M.; Valiakhmetov, O.R.; Salishchev, G.A. Dynamic recrystallization of coarse-grained titanium alloy in the (α+β)-region. Russ. Metall. 1990, 4, 97–103.
[12]
Korbel, A.; Richert, M. Formation of shear bands during cyclic deformation of aluminum. Acta Metall. 1985, 33, 1971–1978, doi:10.1016/0001-6160(85)90119-1.
[13]
Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189, doi:10.1016/S0079-6425(99)00007-9.
[14]
Lowe, T.C.; Valiev, R.Z. The use of severe plastic deformation techniques in grain refinement. JOM J. Miner. Met. Mater. Soc. 2004, 56, 64–77.
[15]
Langdon, T.G. The processing of ultrafine-grained materials through the application of severe plastic deformation. J. Mater. Sci. 2007, 42, 3388–3397, doi:10.1007/s10853-006-1475-8.
[16]
Tsuji, N.; Saito, Y.; Lee, S.-H.; Minamino, Y. ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 2003, 5, 338–344, doi:10.1002/adem.200310077.
[17]
Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; Yanagida, A. Severe Plastic Deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol. 2008, 57, 716–735, doi:10.1016/j.cirp.2008.09.005.
[18]
Glazov, M.V.; Laird, C. Size effects of dislocation patterning in fatigued metals. Acta Metall. Mater. 1995, 43, 2849–2857, doi:10.1016/0956-7151(94)00463-R.
[19]
Thiele, E.; Klemm, R.; Hollag, L.; Holste, C.; Schell, N.; Natter, H.; Hempelmann, R. An approach to cyclic plasticity and deformation-induced structure changes of electrodeposited nickel. Mater. Sci. Eng. A 2005, 390, 42–51, doi:10.1016/j.msea.2004.09.022.
[20]
Vinogradov, A.; Kaneko, Y.; Kitagawa, K.; Hashimoto, S.; Stolyarov, V.; Valiev, R. Cyclic response of ultrafine-grained copper at constant plastic strain amplitude. Scr. Mater. 1997, 36, 1345–1451, doi:10.1016/S1359-6462(97)00023-7.
[21]
Agnew, S.R.; Weertman, J.R. Cyclic softening of ultrafine grain copper. Mater. Sci. Eng. A 1998, 244, 145–153.
[22]
Agnew, S.R.; Vinogradov, A.Yu.; Hashimoto, S.; Weertman, J. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 1999, 28, 1038–1044, doi:10.1007/s11664-999-0181-0.
[23]
H?ppel, H.W.; Brunnbauer, M.; Mughrabi, H. Cyclic deformation behaviour of ultrafine grain size copper produced by equal channel angular extrusion. Munich, Germany, 25-28 September 2000; Werkstoffwoche-Partnerschaft GbR: Frankfurt, Germany, 2000; pp. 25–28.
[24]
H?ppel, H.W.; Zhou, Z.M.; Mughrabi, H.; Valiev, R.Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 2002, 82, 1781–1794.
[25]
Wu, S.D.; Wang, Z.G.; Jiang, C.B.; Li, G.Y.; Alexandrov, I.V.; Valiev, R.Z. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP. Scr. Mater. 2003, 48, 1605–1609, doi:10.1016/S1359-6462(03)00141-6.
[26]
Li, X.W.; Umakoshi, Y.; Wu, S.D.; Wang, Z.G.; Alexandrov, I.V.; Valiev, R.Z. Temperature effects on the fatigue behavior of ultrafine-grained copper produced by equal channel angular pressing. Phys. Stat. Sol. 2004, 201, R119–R122, doi:10.1002/pssa.200409073.
[27]
Huang, C.X.; Wang, S.C.; Wu, S.D.; Jiang, C.B.; Li, G.Y.; Li, S.X. On the stability of defects and grain size in ultrafine-grained copper during cyclic deformation and subsequent ageing at room temperature. Mater. Sci. Forum 2005, 475–479, 4055–4058.
[28]
Li, X.W.; Wu, S.D.; Wu, Y.; Yasuda, H.Y.; Umakoshi, Y. Temperature-dependent microstructures in fatigued ultrafine-grained copper produced by equal channel angular pressing. Adv. Eng. Mater. 2005, 7, 829–833, doi:10.1002/adem.200500108.
[29]
Maier, H.J.; Gabor, P.; Gupta, N.; Karaman, I.; Haouaoui, M. Cyclic stress-strain response of ultrafine grained copper. Int. J. Fatigue 2006, 28, 243–250, doi:10.1016/j.ijfatigue.2005.05.004.
[30]
Goto, M.; Han, S.Z.; Yakushiji, T.; Lim, C.Y.; Kim, S.S. Formation process of shear bands and protrusions in ultrafine grained copper under cyclic stresses. Scr. Mater. 2006, 54, 2101–2106.
[31]
Han, S.Z.; Goto, M.; Lim, C.; Kim, C.J.; Kim, S. Fatigue behavior of nano-grained copper prepared by ECAP. J. Alloy. Comd. 2007, 434–435, 304–306.
[32]
Li, X.-W.; Jiang, Q.-W.; Ying, W.; Wang, Y.; Umakoshi, Y. Stress-amplitude-dependent deformation characteristics and microstructures of cyclically stressed ultrafine-grained copper. Adv. Eng. Mater. 2008, 10, 720–726, doi:10.1002/adem.200800042.
[33]
Goto, M.; Han, S.Z.; Yakushiji, T.; Kim, S.S.; Lim, C.Y. Fatigue strength and formation behavior of surface damage in ultrafine grained copper with different non-equilibrium microstructures. Int. J. Fatigue 2008, 30, 1333–1344, doi:10.1016/j.ijfatigue.2007.11.001.
[34]
Canadinc, D.; Maier, H.J.; Haouaoui, M.; Karaman, I. On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scr. Mater. 2008, 58, 307–310, doi:10.1016/j.scriptamat.2007.09.059.
[35]
Furukawa, Y.; Fujii, T.; Onaka, S.; Kato, M. Cyclic deformation behaviour of ultra-fine grained copper produced by equal channel angular pressing. Mater. Trans. 2009, 50, 70–75, doi:10.2320/matertrans.MD200806.
[36]
Khatibi, G.; Horky, J.; Weiss, B.; Zehetbauer, M.J. High cycle fatigue behavior of copper deformed by high pressure torsion. Int. J. Fatigue 2010, 32, 269–278, doi:10.1016/j.ijfatigue.2009.06.017.
[37]
Wang, Q.; Du, Z.; Liu, X.; Kunz, L. Fatigue property and fatigue cracks of ultra-fine grained copper processed by equal-channel angular pressing. Mater. Sci. Forum 2011, 682, 231–237, doi:10.4028/www.scientific.net/MSF.682.231.
[38]
Canadinc, D.; Niendorf, T.; Maier, H.J. A comprehensive evaluation of parameters governing the cyclic stability of ultrafine-grained FCC alloys. Mater. Sci. Eng. A 2011, 528, 6345–6355, doi:10.1016/j.msea.2011.04.051.
[39]
Vinogradov, A.; Kaneko, Y.; Kitagawa, K.; Hashimoto, S.; Valiev, R. On the cyclic response of ultrafine-grained copper. Mater. Sci. Forum 1998, 269–272, 987–992.
[40]
Kunz, L.; Luká?, P.; Svoboda, M. Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng. A 2006, 424, 97–104, doi:10.1016/j.msea.2006.02.029.
[41]
Luká?, P.; Kunz, L.; Svoboda, M. Effect of low temperature on fatigue life and cyclic stress-strain response of ultrafine-grained copper. Metall. Mater. Trans. A 2007, 38A, 1910–1915.
[42]
Xu, C.Z.; Wang, Q.J.; Zheng, M.S.; Li, J.D.; Huang, M.Q.; Jia, Q.M.; Zhu, J.W.; Kunz, L.; Buksa, M. Effect of low temperature on fatigue life and cyclic stress-strain response of ultrafine-grained copper. Mater. Sci. Eng. A 2008, 475, 249–256, doi:10.1016/j.msea.2007.04.074.
[43]
Kunz, L.; Luká?, P.; Pantelejev, L.; Man, O. Stability of microstructure of ultrafine-grained copper under fatigue and thermal exposition. Strain 2010, 47, 476–482.
[44]
Kunz, L.; Luká?, P.; Pantelejev, L.; Man, O. Stability of ultrafine-grained structure of copper under fatigue loading. Proc. Eng. 2011, 10, 201–206, doi:10.1016/j.proeng.2011.04.036.
[45]
Patlan, V.; Higashi, K.; Kitagawa, K.; Vinogradov, A.; Kawazoe, M. Cyclic response of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing. Cyclic response of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing 2001, 319–321, 587–591.
[46]
Zhang, Z.F.; Wu, S.D.; Li, Y.J.; Liu, S.M.; Wang, Z.G. Cyclic deformation and fatigue properties of Al-0.7 wt.% Cu alloy produced by equal channel angular pressing. Mater. Sci. Eng. A 2005, 412, 279–286, doi:10.1016/j.msea.2005.08.221.
[47]
Wong, M.K.; Kao, W.P.; Lui, J.T.; Chang, C.P.; Kao, P.W. Cyclic deformation of ultrafine-grained aluminum. Acta Mater. 2007, 55, 715–725.
[48]
Canadinc, D.; Maier, H.J.; Gabor, P.; May, J. On the cyclic deformation response of ultrafine-grained Al-Mg alloys at elevated temperatures. Mater. Sci. Eng. A 2008, 496, 114–120, doi:10.1016/j.msea.2008.04.071.
[49]
H?ppel, H.W.; May, J.; G?ken, M. Cyclic deformation behavior and fatigue lives of ultrafine-grained Aluminum-Magnesium alloys. Mater. Sci. Forum 2008, 584–586, 840–845.
[50]
May, J.; Amberger, D.; Dinkel, M.; H?ppel, H.W. Monotonic and cyclic deformation behavior of ultrafine-grained aluminum. Mater. Sci. Eng. A 2008, 483–484, 481–484.
[51]
Hockauf, K.; Niendorf, T.; Wagner, S.; Halle, S.; Meyer, L.W. Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatigue. Proc. Eng. 2010, 2, 2199–2208, doi:10.1016/j.proeng.2010.03.236.
[52]
Vinogradov, A.Yu.; Stolyarov, V.V.; Hashimoto, S.; Valiev, R.Z. Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng. A 2001, 318, 163–173, doi:10.1016/S0921-5093(01)01262-X.
[53]
Niendorf, T.; Canadinc, D.; Maier, H.J.; Karaman, I. On the microstructural stability of ultrafine-grained interstitial-free steel under cyclic loading. Metall. Mater. Trans. A 2007, 38A, 1946–1955.
[54]
Niendorf, T.; Maier, H.J.; Canadinc, D.; Karaman, I. On the cyclic stability and fatigue performance of ultrafine-grained interstitial-free steel under mean stress. Key Eng. Mater. 2008, 378–379, 39–52.
[55]
H?ppel, H.W. Mechanical Properites of ultrafine grained metals under cyclic and monotonic loads: An overview. Mater. Sci. Forum 2006, 503–504, 259–266, doi:10.4028/www.scientific.net/MSF.503-504.259.
[56]
Kwan, C.C.F.; Wang, Z. Cyclic deformation behavior of ultra-fine grained copper processed by accumulative roll-bonding. Proc. Eng. 2010, 2, 101–110.
[57]
Kwan, C.C.F.; Wang, Z. A composite nature of cyclic strain accommodation mechanisms of accumulative roll bonding (ARB) processed Cu sheet materials. Mater. Sci. Eng. A 2011, 528, 2042–2048.
[58]
Malekjani, S.; Hodgson, P.D.; Cizek, P.; Hilditch, T.B. Cyclic deformation response of ultrafine pure Al. Acta Mater. 2011, 59, 5358–5367.
[59]
Malekjani, S.; Hodgson, P.D.; Cizek, P.; Sabirov, I.; Hilditch, T.B. Cyclic deformation response of UFG 2024 Al alloy. Int. J. Fatigue 2011, 33, 700–709, doi:10.1016/j.ijfatigue.2010.11.025.
[60]
Suresh, S. Fatigue of Materials; Cambridge University Press: Cambridge, UK, 2003.
[61]
Kwan, C.C.F.; Wang, Z. ARBed copper data. University of Toronto, Toronto, Canada, 2011. Unpublished work.
[62]
Mughrabi, H.; H?ppel, H.W. Cyclic deformation and fatigue properties of ultrafine grain size materials: current status and some criteria for improvement of the fatigue resistance. Mater. Res. Soc. Symp. Proc. 2001, 634, B2.1.1–B2.1.12.
[63]
H?ppel, H.W.; Xu, C.; Kautz, M.; Barta-Shreiba, N.; Langdon, T.G.; Mughrabi, H. Cyclic deformation behaviour and possibilities for enhancing the fatigue properties of ultrafine-grained metals. Vienna, Austria, 9–13 December; Zehetbauer, M.J., Valiev, R.Z., Eds.; Weinheim/Wiley VCG: New York, NY, USA; pp. 667–683.
[64]
Mughrabi, H.; H?ppel, H.W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 2010, 32, 1413–1427, doi:10.1016/j.ijfatigue.2009.10.007.
[65]
Vinogradov, A.; Hashimoto, S. Multiscale phenomena in fatigue of ultra-fine grain materials—An Overview. Mater. Trans. 2001, 42, 74–84, doi:10.2320/matertrans.42.74.
[66]
Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.G. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998, 46, 3317–3331, doi:10.1016/S1359-6454(97)00494-1.
[67]
Langdon, T.G. The processing of ultrafine-grained materials through the application of severe plastic deformation. J. Mater. Sci. 2007, 42, 3388–3397, doi:10.1007/s10853-006-1475-8.
[68]
Langdon, T.G. The principles of grain refinement in equal-channel angular pressing. Mater. Sci. Eng. A 2007, 462, 3–11, doi:10.1016/j.msea.2006.02.473.
[69]
Kim, Y.-S.; Lee, T.-O.; Shin, D.H. Microstructural evolution and mechanical properties of ultrafine grained commercially pure 1100 aluminum alloy processed by accumulative roll-bonding (ARB). Mater. Sci. Forum 2004, 449–452, 625–628.
[70]
Huang, X.; Tsuji, N.; Hansen, N.; Minamino, Y. Microstructual evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. Eng. A 2003, 340, 265–271, doi:10.1016/S0921-5093(02)00182-X.
[71]
Wang, Y.M.; Ma, E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A 2004, 375–377, 46–53.
[72]
H?ppel, H.W; May, J.; G?ken, M. Enhanced strength and ductility in ultrafine-grained aluminum produced by accumulative roll bonding. Adv. Eng. Mater. 2004, 6, 219–222, doi:10.1002/adem.200300582.