全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2012 

Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers) for Aluminum Alloys

DOI: 10.3390/met2030353

Keywords: Magnesium, sacrificial anode, cathodic protection, Mg-rich primers, anticorrosive coatings, aluminum alloys, corrosion protection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers) as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD) to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

References

[1]  Simandl, G.J.; Schultes, H.; Simandl, J.; Paradis, S. Magnesium-raw materials, metal extraction and economics—Global picture. In Digging Deeper, Proceedings of the Ninth Biennial SGA Meeting; Irish Association for Economic Geology: Dublin, UK, 2007; pp. 827–831.
[2]  Guo, K.W. A review of magnesium/magnesium alloys corrosion. Recent Pat. Corros. Sci. 2011, 1, 72–90.
[3]  Wu, C.-Y.; Zhang, J. State-of-art on corrosion and protection of magnesium alloys based on patent literatures. Trans. Nonferrous Met. Soc. China 2011, 21, 892–902, doi:10.1016/S1003-6326(11)60799-1.
[4]  Gray, J.E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloy Compd. 2002, 336, 88–113, doi:10.1016/S0925-8388(01)01899-0.
[5]  Zeng, R.-C.; Zhang, J.; Huang, W.-J.; Dietzel, W.; Kainer, K.U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, 763–771, doi:10.1016/S1003-6326(06)60297-5.
[6]  Song, G.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33, doi:10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N.
[7]  Ambat, R.; Aung, N.N.; Zhou, W. Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy. Corros. Sci. 2000, 42, 1433–1455, doi:10.1016/S0010-938X(99)00143-2.
[8]  Shaw, B.A.; Wolfe, R.C. Corrosion of Magnesium and Magnesium-Base Alloys. In ASM Handbook, Corrosion: Materials; Cramer, S.D., Covino, B.S., Jr., Eds.; ASM International: Russell Township, OH, USA, 2005; Volume 13B, pp. 205–227.
[9]  Gurrappa, I. Cathodic protection of cooling water systems and selection of appropriate materials. J. Mater. Process. Technol. 2005, 166, 256–267, doi:10.1016/j.jmatprotec.2004.09.074.
[10]  Popov, B.N.; Kumaraguru, S.P. Cathodic Protection of Pipelines. In Handbook of Environmental Degradation of Materials; Myer, K., Ed.; William Andrew Publishing: Norwich, NY, USA, 2005; pp. 503–521. Chapter 24.
[11]  Lindstr?m, R. Atmospheric Corrosion of Magnesium alloys Influence of Microstructure and Environment. Ph.D. Thesis, G?teborg University, G?teborg, Sweden, 2007.
[12]  Loose, W.S. Corrosion and Protection of Magnesium. In Metals Handbook; Pidgeon, L.M., Mathes, J.C., Woldmen., N.E., Eds.; ASM International: Russell Township, OH, USA, 1946; pp. 173–260.
[13]  Rozenfeld, I.L. Atmospheric Corrosion of Metals; National Association of Corrosion Engineers: Houston, TX, USA, 1972.
[14]  Tomashov, N.D. Theory and Protection of Metals: The Science of Corrosion; The Macmillan Company: London, UK, 1966; pp. 367–398.
[15]  J?nsson, M.; Persson, D.; Leygraf, C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D. Corros. Sci. 2008, 50, 1406–1413, doi:10.1016/j.corsci.2007.12.005.
[16]  Prigiobbe, V.; H?nchen, M.; Werner, M.; Baciocchi, R.; Mazzotti, M. Mineral carbonation process for CO2 sequestration. Energy Proced. 2009, 1, 4885–4890, doi:10.1016/j.egypro.2009.02.318.
[17]  Bruant, R.G., Jr.; Giammar, D.E.; Myneni, S.C.B.; Peters, C.A. Effect of pressure, temperature, and aqueous carbon dioxide concentration on mineral weathering as applied to geologic storage of carbon dioxide. In Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 1–4 October 2002; pp. 1609–1612.
[18]  Feliu, S., Jr.; Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys. Appl. Surf. Sci. 2009, 255, 4102–4108, doi:10.1016/j.apsusc.2008.10.095.
[19]  Lindstr?m, R.; Johansson, L.G.; Svensson, J.E. The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91. Mater. Corros. 2003, 54, 587–594, doi:10.1002/maco.200390130.
[20]  Lindstr?m, R.; Johansson, L.G.; Thompson, G.E.; Skeldon, P.; Svensson, J.E. Corrosion of magnesium in humid air. Corros. Sci. 2004, 46, 1141–1158, doi:10.1016/j.corsci.2003.09.010.
[21]  Lin, C.; Li, X. Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl. Rare Met. 2006, 25, 190–196.
[22]  Hao, Z.; Du, F. Synthesis of basic magnesium carbonate microrods with a “house of cards” surface structure using rod-like particle template. J. Phys. Chem. Solids 2009, 70, 401–404, doi:10.1016/j.jpcs.2008.11.005.
[23]  Blücher, D.B.; Svensson, J.-E.; Johansson, L.-G.; Rohwerder, M.; Stratmann, M. Scanning Kelvin probe force microscopy: A useful tool for studying atmospheric corrosion of MgAl alloys in situ. J. Electrochem. Soc. 2004, 151, B621–B626, doi:10.1149/1.1809590.
[24]  Lindstr?m, R.; Svensson, J.-E.; Johansson, L.-G. The influence of carbon dioxide on the atmospheric corrosion of some magnesium alloys in the presence of NaCl. J. Electrochem. Soc. 2002, 149, B103–B107, doi:10.1149/1.1452115.
[25]  Nanna, M.E.; Bierwagen, G.P. Mg-rich coatings: A new paradigm for Cr-free corrosion protection of Al aerospace alloys. J. Coat. Technol. Res. 2004, 1, 69–80, doi:10.1007/s11998-004-0001-7.
[26]  Glancy, C.W. Oil Absorption of Pigments. In Paint and Coating Testing Manual: 15th Edition of the Gardner-Sward Handbook; Joseph, K., Ed.; ASTM International: West Conshohocken, PA, USA, 2012; pp. 304–305. Chapter 29.
[27]  Bierwagen, G.P.; Brown, R.; Battocchi, D.; Hayes, S. Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment. Prog. Org. Coat. 2010, 68, 48–61, doi:10.1016/j.porgcoat.2009.10.031.
[28]  Osborne, J.H.; Blohowiak, K.Y.; Taylor, S.R.; Hunter, C.; Bierwagen, G.P.; Carslon, B.; Bernard, D.; Donley, M.S. Testing and evaluation of non-chromated coating systems for aerospace applications. Prog. Org. Coat. 2001, 41, 217–225.
[29]  Covino, J.J.; Sugden, K.D. Genotoxicity of chromate. Adv. Mol. Toxic. 2008, 2, 1–24, doi:10.1016/S1872-0854(07)02001-2.
[30]  Morris, E.; Ray, C.; Albers, R.; McLaughlin, J.; Bean, S.; DeAntoni, A.; Patel, R. Using chrome-free primer technology to develop a chrome-free pretreatment. Proceedings of the 2007 Tri-Service Corrosion Conference, Denver, CO, USA, 3–6 December 2007; Available online: https://www.corrdefense.org/technical%20papers/using%20chrome-free%20primer%20technology%20to%20develop%20a%20chrome-free%20pretreatment.pdf (accessed on 30 May 2012).
[31]  Joint DoD Demonstration and Validation of Magnesium Rich Primer Coating Technology. Available online: http://www.serdp.org/Program-Areas/Weapons-Systems-and-Platforms/Surface-Engineering-and-Structural-Materials/Coatings/WP-200731 (accessed on 30 April 2012).
[32]  Twite, R.L.; Bierwagen, G.P. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat. 1998, 33, 91–100.
[33]  Pathak, S.S.; Khanna, A.S. Synthesis and performance evaluation of environmentally compliant epoxysilane coatings for aluminum alloy. Prog. Org. Coat. 2008, 62, 409–416, doi:10.1016/j.porgcoat.2008.02.008.
[34]  Pathak, S.S.; Khanna, A.S. Investigation of anti-corrosion behavior of waterborne organosilane–polyester coatings for AA6011 aluminum alloy. Prog. Org. Coat. 2009, 65, 288–294, doi:10.1016/j.porgcoat.2008.12.006.
[35]  Pathak, S.S.; Sharma, A.; Khanna, A.S. Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy. Prog. Org. Coat. 2009, 65, 206–216, doi:10.1016/j.porgcoat.2008.11.005.
[36]  Hamdy, A.S. Enhancing corrosion resistance of aluminum composites in 3.5% NaCl using pigmented epoxy fluoropolymer. Prog. Org. Coat. 2006, 55, 218–224.
[37]  Yasuda, H.K.; Reddy, C.M.; Yu, Q.S.; Deffeyes, J.; Bierwagen, G.P.; He, L. Effect of scribing on corrosion test results. Corrosion 2001, 57, 29–34, doi:10.5006/1.3290326.
[38]  He, J.; Gelling, V.J.; Tallman, D.E.; Bierwagen, G.P.; Wallace, G.G. Conducting polymers and corrosion. III. A scanning vibrating electrode study of poly(3-octyl pyrrole) on steel and aluminum. J. Electrochem. Soc. 2000, 147, 3667–3672.
[39]  Tallman, D.E.; Pae, Y.; Bierwagen, G.P. Conducting polymers and corrosion. 2. Polyaniline on aluminum alloys. Corrosion 2000, 56, 401–410, doi:10.5006/1.3280544.
[40]  Sim?es, A.; Battocchi, D.; Tallman, D.; Bierwagen, G.P. Assessment of the corrosion protection of aluminium substrates by a Mg-rich primer: EIS, SVET and SECM study. Prog. Org. Coat. 2008, 63, 260–266, doi:10.1016/j.porgcoat.2008.02.007.
[41]  Bierwagen, G.P.; Nanna, M.E.; Battocchi, D. Magnesium Rich Coatings and Coating Systems. U.S. Patent 20,070,128,351, 7 October 2004.
[42]  Price, C.J.; Johnson, J. Performance Evaluation of a Magnesium-Rich Primer for Chrome-Free Aerospace Coating Systems. Available online: http://symposiumarchive.serdp-estcp.org/symposium2008/posters/upload/w189-joseph.pdf (accessed on 30 May 2012).
[43]  Johnson, J.A. Magnesium rich primer for chrome free protection of aluminum alloys. In Proceedings of the Tri-Service Corrosion Conference 2007, Denver, CO, USA, 3–7 December 2007.
[44]  Ahmad, Z. Cathodic Protection. In Principles of Corrosion Engineering and Corrosion Control; Butterworth-Heinemann: Oxford, UK, 2006; pp. 271–351.
[45]  Bierwagen, G.; Battocchi, D.; Simoes, A.; Stamness, A.; Tallman, D. The use of multiple electrochemical techniques to characterize Mg-rich primers for Al alloys. Prog. Org. Coat. 2007, 59, 172–178, doi:10.1016/j.porgcoat.2007.01.022.
[46]  Battocchi, D.; Sim?es, A.M.; Tallman, D.E.; Bierwagen, G.P. Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys. Corros. Sci. 2006, 48, 1292–1306, doi:10.1016/j.corsci.2005.04.008.
[47]  Battocchi, D.; Sim?es, A.M.; Tallman, D.E.; Bierwagen, G.P. Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer. Corros. Sci. 2006, 48, 2226–2240, doi:10.1016/j.corsci.2005.05.059.
[48]  Allahar, K.N.; Battocchi, D.; Orazem, M.E.; Bierwagen, G.P.; Tallman, D.E. Modeling of electrochemical impedance data of a magnesium-rich primer. J. Electrochem. Soc. 2008, 155, E143–E149, doi:10.1149/1.2965519.
[49]  Allahar, K.N.; Wang, D.; Battocchi, D.; Bierwagen, G.P.; Balbyshev, S. Real-time monitoring of a United States air force topcoat/Mg-rich primer system in ASTM B117 exposure by embedded electrodes. Corrosion 2010, 66, 075003:1–075003:11.
[50]  Sim?es, A.M.; Battocchi, D.; Tallman, D.E.; Bierwagen, G.P. SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating. Corros. Sci. 2007, 49, 3838–3849, doi:10.1016/j.corsci.2007.03.045.
[51]  Li, J.; He, J.; Chisholm, B.J.; Stafslien, M.; Battocchi, D.; Bierwagen, G.P. An investigation of the effects of polymer binder compositional variables on the corrosion control of aluminum alloys using magnesium-rich primers. J. Coat. Technol. Res. 2010, 7, 757–764, doi:10.1007/s11998-010-9264-3.
[52]  King, A.D.; Scully, J.R. Sacrificial anode-based galvanic and barrier corrosion protection of 2024-T351 by a Mg-rich primer and development of test methods for remaining life assessment. Corrosion 2011, 67, 055004:1–055004:22.
[53]  Ravindran, N.; Chattopadhyay, D. K.; Zakula, A.; Battocchi, D.; Webster, D.C.; Bierwagen, G.P. Thermal stability of magnesium-rich primers based on glycidyl carbamate resins. Polym Degrad. Stab. 2010, 95, 1160–1166.
[54]  Hayes, S.; Brown, R.; Visser, P.; Adams, P.; Chapman, M. Magnesium rich primers and related developments for the replacement of chromium containing aerospace primers. Proceedings of the 2011 Corrosion Conference, Houston, TX, USA, 13–17 March 2011; Available online: https://www.corrdefense.org/Spotlight/2011%20Corrosion%20Conference%20Presentations/Magnesium%20rich%20primers%20and%20related%20developments%20for%20the%20replacement%20of%20chromium%20contraining%20aerospace%20primers.pdf (accessed on 30 April 2012).
[55]  Lu, X.; Zuo, Y.; Zhao, X.; Tang, Y.; Feng, X. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy. Corros. Sci. 2011, 53, 153–160.
[56]  Bierwagen, G. The physical chemistry of organic coatings revisited—Viewing coatings as a materials scientist. J. Coat. Technol. Res. 2008, 5, 133–155, doi:10.1007/s11998-007-9066-4.
[57]  Pathak, S.S.; Blanton, M.D.; Mendon, S.K.; Rawlins, J.W. Investigation on dual corrosion performance of magnesium-rich primer for aluminum alloys under salt spray test (ASTM B117) and natural exposure. Corros. Sci. 2010, 52, 1453–1463, doi:10.1016/j.corsci.2009.11.032.
[58]  Strekalov, P.V. The atmospheric corrosion of metals by adsorbed polymolecular moisture layers. Prot. Met. 1998, 34, 501–519.
[59]  Smith, R.M.; Martell, A.E. Critical Stability Constants; Plenum Press: New York, NY, USA, 1973.
[60]  J?nsson, M.; Persson, D.; Thierry, D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D. Corros. Sci. 2007, 49, 1540–1558, doi:10.1016/j.corsci.2006.08.004.
[61]  White, W.B. Thermodynamic equilibrium kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains. Environ. Geol. 1997, 30, 46–58.
[62]  Hosking, N.C.; Str?m, M.A.; Shipway, P.H.; Rudd, C.D. Corrosion resistance of zinc–magnesium coated steel. Corros. Sci. 2007, 49, 3669–3695, doi:10.1016/j.corsci.2007.03.032.
[63]  Duan, Z.; Sun, R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 2002, 193, 257–271, doi:10.1016/S0009-2541(02)00263-2.
[64]  Yao, H.B.; Li, Y.; Wee, A.T.S. An XPS investigation of the oxidation/corrosion of melt-spun Mg. Appl. Surf. Sci. 2000, 158, 112–119, doi:10.1016/S0169-4332(99)00593-0.
[65]  Portier, S.; Rochelle, C. Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 °C and from 1 to 300 bar: Application to the Utsira Formation at Sleipner. Chem. Geol. 2005, 217, 187–199, doi:10.1016/j.chemgeo.2004.12.007.
[66]  Henrist, C.; Mathieu, J.-P.; Vogels, C.; Rulmont, A.; Cloots, R. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Growth 2003, 249, 321–330, doi:10.1016/S0022-0248(02)02068-7.
[67]  Gao, Y.; Wang, H.; Su, Y.; Shen, Q.; Wang, D. Influence of magnesium source on the crystallization behaviors of magnesium hydroxide. J. Cryst. Growth 2008, 310, 3771–3778, doi:10.1016/j.jcrysgro.2008.05.032.
[68]  Wang, Y.; Li, Z.; Demopoulos, G.P. Controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3. J. Cryst. Growth 2008, 310, 1220–1227, doi:10.1016/j.jcrysgro.2008.01.002.
[69]  Mitsuhashi, K.; Tagami, N.; Tanabe, K.; Ohkubo, T.; Sakai, H.; Koishi, M.; Abe, M. Synthesis of microtubes with a surface of “house of cards” structure via needlelike particles and control of their pore size. Langmuir 2005, 21, 3659–3663.
[70]  Pathak, S.S.; Blanton, M.D.; Mendon, S.K. School of Polymes and High Performance Materials, The University of Southern Mississippi Hattiesburg, MS, USA. 2011. Unpublished work.
[71]  Pathak, S.S.; Blanton, M.D.; Mendon, S.K.; Rawlins, J.W. Carbonation of Mg powder to enhance the corrosion resistance of Mg-rich primers. Corros. Sci. 2010, 52, 3782–3792, doi:10.1016/j.corsci.2010.07.030.
[72]  Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: New York, NY, USA, 1989.
[73]  Khramov, A.N.; Balbyshev, V.N.; Kasten, L.S.; Mantz, R.A. Sol–gel coatings with phosphonatefunctionalities for surface modification of magnesium alloys. Thin Solid Films 2006, 514, 174–181, doi:10.1016/j.tsf.2006.02.023.
[74]  Turel, T.; Pathak, S.S.; Blanton, M.D.; Mendon, S.K.; Rawlins, J.W. Optimizing the Transformation of Magnesium Powder to Enhance its Corrosion Protection. In Proceedings of the 38th Annual International Waterborne, High-Solids, and Powder Coatings Symposium, Orleans, LA, USA, 28 February–4 March 2011; pp. 430–437.
[75]  Maier, B.; Frankel, G.S. Behavior of magnesium-rich primers on AA2024-T3. Corrosion 2011, 67, 055001:1–055001:15.
[76]  Xu, H.; Battocchi, D.; Tallman, D.E.; Bierwagen, G.P. Use of magnesium alloys as pigments in magnesium-rich primers for protecting aluminum alloys. Corrosion 2009, 65, 318–325, doi:10.5006/1.3319136.
[77]  Bierwagen, G.; Brown, R.; Battocchi, D.; Hayes, S. Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment. Prog. Org. Coat. 2010, 67, 195–208.
[78]  Wang, Y.-P.; Zhao, X.-H.; Lu, X.-Y.; Zuo, Y. Corrosion protection of ceria particle in Mg-rich primer on AZ91D magnesium alloy. Acta Phys. Chim. Sin. 2012, 28, 407–413.
[79]  Lu, X.; Zuo, Y.; Zhao, X.; Tang, Y. The improved performance of a Mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment. Corros. Sci. 2012, 60, 165–172, doi:10.1016/j.corsci.2012.03.041.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133