全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2012 

Influence of Nickel Particle Reinforcement on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Composite

DOI: 10.3390/met2020143

Keywords: magnesium alloy, particulate reinforcements, aluminum oxide, nano-size, cyclic fatigue, fracture

Full-Text   Cite this paper   Add to My Lib

Abstract:

The microstructure, tensile properties, cyclic stress amplitude fatigue response and final fracture behavior of a magnesium alloy, denoted as AZ31, discontinuously reinforced with nano-particulates of aluminum oxide and micron size nickel particles is presented and discussed. The tensile properties, high cycle fatigue and final fracture behavior of the discontinuously reinforced magnesium alloy are compared with the unreinforced counterpart (AZ31). The elastic modulus and yield strength of the dual particle reinforced magnesium alloy is marginally higher than of the unreinforced counterpart. However, the tensile strength of the composite is lower than the monolithic counterpart. The ductility quantified by elongation to failure over 0.5 inch (12.7 mm) gage length of the test specimen showed minimal difference while the reduction in specimen cross-section area of the composite is higher than that of the monolithic counterpart. At the microscopic level, cyclic fatigue fractures of both the composite and the monolithic alloy clearly revealed features indicative of the occurrence of locally ductile and brittle mechanisms. Over the range of maximum stress and at two different load ratios the cyclic fatigue resistance of the magnesium alloy composite is superior to the monolithic counterpart. The mechanisms responsible for improved cyclic fatigue life and resultant fracture behavior of the composite microstructure are highlighted.

References

[1]  Magnesium Alloys—Design, Processing and Properties; Czerwinski, F., Trojanova, Z., Szaraz, Z., Palcek, P., Chalupova, M., Eds.; InTech: Shanghai, China, 2011.
[2]  Lloyd, D.J. Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 1994, 39, 1–24, doi:10.1179/095066094790150982.
[3]  Srivatsan, T.S.; Sudarshan, T.S.; Lavernia, E.J. Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Prog. Mater. Sci. 1995, 39, 317–409, doi:10.1016/0079-6425(95)00003-8.
[4]  Morisada, Y.; Fujii, Y.; Nagaoka, H.; Fukusumi, T. Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater. Sci. Eng. A 2006, 433, 50–54, doi:10.1016/j.msea.2006.06.089.
[5]  Ho, K.F.; Gupta, M.; Srivatsan, T.S. The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates. Mater. Sci. Eng. A 2004, 369((1-2)), 302–308, doi:10.1016/j.msea.2003.11.011.
[6]  Srivatsan, T.S.; Lewandowski, J.J. Advanced Structural Materials: Processing, Design Optimization and Applications; Soboyejo, W., Srivatsan, T.S., Eds.; CRC Press: New York, NY, USA, 2009; pp. 2699–3477.
[7]  Llorca, J. Fatigue of particle-and whisker-reinforced metal-matrix composites. Prog. Mater. Sci. 2002, 47, 283–353, doi:10.1016/S0079-6425(00)00006-2.
[8]  Nguyen, Q.B.; Gupta, M. Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J. Alloy. Compd. 2008, 459, 244–250, doi:10.1016/j.jallcom.2007.05.038.
[9]  Paramsothy, M.; Hasan, S.F.; Srikanth, N.; Gupta, M. Enhancing tensile/compressive response of magnesium alloy AZ31by integrating with Al2O3nanoparticles. Mater. Sci. Eng. A 2009, 527, 162–168, doi:10.1016/j.msea.2009.07.054.
[10]  Paramsothy, M.; Chan, J.; Kwok, R.; Gupta, M. The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91. J. Alloy. Compd. 2011, 509, 7572–7578.
[11]  Paramsothy, M.; Chan, J.; Kwok, R.; Gupta, M. Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles. Mater. Sci. Eng. A 2011, 528, 6545–6551, doi:10.1016/j.msea.2011.05.003.
[12]  Tham, L.M.; Gupta, M.; Cheng, L. Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites. Mater. Sci. Technol. 1999, 15, 1139–1146.
[13]  Gupta, M.; Lai, M.O.; Lim, S.C. Regarding the processing associated microstructure and mechanical properties improvement of an Al-4.5 Cu alloy. J. Alloy. Compd. 1997, 260, 250–255, doi:10.1016/S0925-8388(97)00156-4.
[14]  Gupta, M.; Srivatsan, T.S. Microstructure and grain growth behavior of an aluminum alloy metal matrix composite processed by disintegrated melt deposition. J. Mater. Eng. Perform. 1999, 8(4), 473–478, doi:10.1361/105994999770346792.
[15]  Ling, P.S.; Gupta, M.; Lai, M.O.; Srivatsan, T.S. Recycling an aluminum matrix composite using the technique of disintegrated melt deposition. Alum. Trans. 2000, 2(2), 209–215.
[16]  Ganesh, V.V.; Gupta, M.; Srivatsan, T.S. Disintegrated melt deposition technique: A near net shape manufacturing process for metal-based materials. J. Recent Res. Dev. Mater. Sci. Eng. 2002, 119–136.
[17]  Wang, J.-J.; Guo, J.-H.; Chen, L.-Q. TiC/AZ91D composites fabricated by in situ reactive infiltration process and its tensile deformation. Trans. Nonferrous Met. Soc. China 2006, 16(4), 892–896, doi:10.1016/S1003-6326(06)60346-4.
[18]  Habibnejad-Korayema, M.; Mahmudia, R.; Pooleb, W.J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3nano-particles. Mater. Sci. Eng. A 2009, 519, 198–203, doi:10.1016/j.msea.2009.05.001.
[19]  Hassan, S.F.; Gupta, M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloy. Compd. 2006, 419(1-2), 84–90, doi:10.1016/j.jallcom.2005.10.005.
[20]  Standard Test Method for Tension Testing of Metallic Materials Standard E-8; American Society for Testing Materials (ASTM): Philadelphia, PA, USA, 2008.
[21]  Nguyen, Q.B.; Tun, K.S.; Chan, J.; Kwok, R.; Kuma, J.V.M.; Gupta, M. Enhancing strength and hardness of AZ31B through simultaneous addition of nickel and nano-Al2O3 particulates. Mater. Sci. Eng. A 2011, 528(3), 888–894, doi:10.1016/j.msea.2010.10.021.
[22]  Zhao, H.L.; Guan, S.K.; Zheng, F.Y.; Li, Q.K.; Wang, L.G. Microstructure and properties of AZ31 magnesium alloy with rapid solidification. Trans. Nonferrous Met. Soc. China 2005, 15, 144–148.
[23]  Magnesium Alloys—Design, Processing and Properties; Czerwinski, F., Ed.; InTech: Shanghai , China, 2011; pp. 95–112.
[24]  Srivatsan, T.S.; Al-Hajri, M.; Lam, P.C. The quasi-static, cyclic fatigue and final fracture behavior of a magnesium alloy metal-matrix composite. Compos. Part B 2005, 36, 209–222, doi:10.1016/j.compositesb.2004.09.004.
[25]  Jayamathi, M.; Kailas, S.V.; Kumar, K.; Seshan, S.; Srivatsan, T.S. The compressive deformation and impact response of a magnesium alloy: influence of reinforcement. Mater. Sci. Eng. A 2005, 393, 27–35, doi:10.1016/j.msea.2004.09.070.
[26]  Starke, E.A., Jr. Fatigue and Microstructure; Meshii, M., Ed.; American Society for Metals: Metals Park, OH, USA, 1979.
[27]  Srivatsan, T.S.; Annigeri, R. The quasi-static and cyclic fatigue fracture behavior of 2014 aluminum alloy metal-matrix composites. Metall. Mater. Trans. 2000, 31, 959–974.
[28]  Moll, F.; Kainer, K.U. Magnesium Alloys and Technology; Kainer, K.U., Ed.; Wiley: Dresden, Germany, 2002; pp. 197–217.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133