|
环境科学 2012
Analysis of Carbon Balance and Study on Mechanism in Anoxic-Oxic-Settling-Anaerobic Sludge Reduction Process
|
Abstract:
In order to deeply explore the mechanism of sludge reduction in OSA system, carbon balance was performed in an anoxic-oxic-settling-anaerobic(A+OSA) system and a reference AO system to investigate effects of inserting a sludge holding tank in sludge cycle line on the sludge reduction process. Meanwhile, carbon mass change in each reaction unit was identified in terms of solid, liquid and gas phases. The causes of excess sludge reduction in A+OSA system were deduced. The carbon balance results show that when the hydraulic retention time in the sludge holding tank is 7.14 h, carbon percent in solid phase of the sludge reduction system is nearly 50% higher than that of the reference system, supporting the consequence that sludge reduction rate of 49.98% had been achieved. The insertion of a sludge holding tank in the sludge return circuit can be effective in sludge reduction. Carbon changes in each unit reveal that the amount of carbon consumed for biosynthesis in the anoxic and oxic tanks (main reaction zone) of the sludge reduction system is higher than in that of the reference system. Sludge decay is observed in the sludge holding tank. Furthermore, CH4 released from the sludge holding tank is significantly higher than that from the main reaction zone. The DGGE profiles show that there are hydrolytic-fermentative bacteria in the sludge holding tank related to sludge decay. The excess sludge reduction in the A+OSA system could be a result of the combination of sludge decay in the sludge holding tank and sludge compensatory growth in the main reaction cell.