|
环境科学 2012
Synthesis, Characterization and Electrocatalytic Performance of Pd/CMK-3 for Formic Acid Oxidation
|
Abstract:
The synthesis of mesoporous carbons CMK-3 was implemented using SBA-15 samples as the hard templates and sucrose as the carbon source. Ordered mesoporous carbon CMK-3 supported palladium catalyst with a loading amount of 20% (Pd/CMK-3) was prepared by a complexing reduction method. XRD and TEM results showed that the p6mm hexagonal symmetric pore structures of CMK-3 were highly ordered and the Pd nanoparticles with the average size of 4.2 nm and 4.5 nm were well dispersed on CMK-3 and activated carbon (AC) surfaces respectively. Raman results revealed that CMK-3 presented higher graphitization and a higher electric conductivity than AC. The most probable pore size of CMK-3 was 4.5 nm, which is larger than that of AC(0.54 nm). The BET surface area of CMK-3 was 1114 m2·g-1, which was also larger than that of AC(871 m2·g-1). The mesoporous structure of CMK-3 was also observed. The Pd/CMK-3 catalyst exhibited more excellent initial electrocatalytic activity for formic acid oxidation than Pd/AC by cyclic voltammetry (CV). But the chronoamperometry (CA) demonstrated that the stability of the two catalysts were almost equal after 100 s polarization at 0.2 V (vs. SCE).