Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.
References
[1]
Gacesa, P. Alginates. Carbohydr. Polym. 1988, 8, 161–182, doi:10.1016/0144-8617(88)90001-X.
[2]
Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305, doi:10.1016/j.biomaterials.2012.01.007.
Preiss, J.; Ashwell, G. Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosac-charides and 4-deoxy-L-erythro-5-hexoseulose uronic acid. J. Biol. Chem. 1962, 237, 309–316.
[5]
Kim, D.E.; Lee, E.Y.; Kim, H.S. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 2009, 11, 10–16.
[6]
Gacesa, P. Enzymic degradation of alginates. Int. J. Biochem. 1992, 24, 545–552, doi:10.1016/0020-711X(92)90325-U.
[7]
Osawa, T.; Matsubara, Y.; Muramatsu, T.; Kimura, M.; Kakuta, Y. Crystal structure of the alginate (poly alpha-L-guluronate) lyase from Corynebacterium sp. at 1.2 A resolution. J. Mol. Biol. 2005, 345, 1111–1118, doi:10.1016/j.jmb.2004.10.081.
[8]
Caborhydrate-Active enZYmes (CAZy) database. Available online: http://www.cazy.org/fam/acc_PL.html (accessed on 24 September 2012).
[9]
Wong, T.Y.; Preston, L.A.; Schiller, N.L. ALGINATE LYASE: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 2000, 54, 289–340, doi:10.1146/annurev.micro.54.1.289.
[10]
Sawabe, T.; Tanaka, R.; Iqbal, M.M.; Tajima, K.; Ezura, Y.; Ivanova, E.P.; Christen, R. Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int. J. Syst. Evol. Microbiol. 2000, 50, 265–271, doi:10.1099/00207713-50-1-265.
[11]
Li, J.W.; Dong, S.; Song, J.; Li, C.-B.; Chen, X.-L.; Xie, B.-B.; Zhang, Y.-Z. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar. Drugs 2011, 9, 109–123, doi:10.3390/md9010109.
[12]
Lee, Y.K.; Jung, H.J.; Lee, H.K. Marine bacteria associated with the Korean brown alga, Undaria pinnatifida. J. Microbiol. 2006, 44, 694–698.
[13]
Engel, A.S.; Porter, M.L.; Stern, L.A.; Quinlan, S.; Bennett, P.C. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiol. Ecol. 2004, 51, 31–53, doi:10.1016/j.femsec.2004.07.004.
[14]
Kumar, S.; Tamura, K.; Nei, M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinform. 2004, 5, 150–163, doi:10.1093/bib/5.2.150.
[15]
Green, F., III; Clausen, C.A.; Highley, T.L. Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal. Biochem. 1989, 182, 197–199.
[16]
Boyd, J.; Turvey, J.R. Structural studies of alginicacid, using abacterial poly-α-L-guluronate lyase. Carbohydr. Res. 1978, 66, 8.
[17]
Ostgaard, K. Determination of alginate composition by a simple enzymatic assay. Hydrobiologia 1993, 260–261, 513–520.
[18]
Declan, M.; Butler, K.?.; Catherine, L.V.; Evans, A.J.; Kloareg, B. Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). J. Exp. Bot. 1989, 40, 1237–1246.
[19]
Quatrano, R.S.; Stevens, P.T. Cell wall assembly in Fucus zygotes: I. Characterization of the polysaccharide components. Plant Physiol. 1976, 58, 224–231, doi:10.1104/pp.58.2.224.
[20]
Heyraud, A.; Colin-Morel, P.; Gey, C.; Chavagnat, F.; Guinand, M.; Wallach, J. An enzymatic method for preparation of homopolymannuronate blocks and strictly alternating sequences of mannuronic and guluronic units. Carbohydr. Res. 1998, 308, 417–422, doi:10.1016/S0008-6215(98)00094-9.
[21]
Iwamoto, M.; Kurachi, M.; Nakashima, T.; Kim, K.; Yamaguchi, K.; Oda, T.; Iwamoto, Y.; Muramatsu, T. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett. 2005, 579, 4423–4429, doi:10.1016/j.febslet.2005.07.007.
[22]
Akiyama, H.; Endo, T.; Nakakita, R.; Murata, K.; Yonemoto, Y.; Okayama, K. Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem. 1992, 56, 355–356, doi:10.1271/bbb.56.355.
[23]
Mrsny, R.J.; Lazazzera, B.A.; Baughety, A.L.; Schiller, N.L.; Patapoff, T.W. Addition of a bacterial alginate lyase to purulent CF sputum in vitro can result in the disruption of alginate and modification of sputum viscoelasticity. Pulm. Pharmacol. 1994, 7, 357–366, doi:10.1006/pulp.1994.1042.
[24]
Wargacki, A.J.; Leonard, E.; Win, M.N.; Regitsky, D.D.; Santos, C.N.S.; Kim, P.B.; Cooper, S.R.; Raisner, R.M.; Herman, A.; Sivitz, A.B.; et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 2012, 335, 308–313, doi:10.1126/science.1214547.