Induction of Apoptosis, G0/G1 Phase Arrest and Microtubule Disassembly in K562 Leukemia Cells by Mere15, a Novel Polypeptide from Meretrix meretrix Linnaeus
Mere15 is a novel polypeptide from Meretrix meretrix Linnaeus with cytotoxicity in solid cancer cells. In this study, we investigated its activity on human K562 chronic myelogenous leukemia cells. Mere15 inhibited the growth of K562 cells with IC 50 values of 38.2 μg/mL. Mere15 also caused concentration dependent induction of apoptosis, with overproduction of reactive oxygen species and loss of mitochondrial membrane potential. Moreover, Mere15 arrested cell cycle progression at G 0/G 1 phase of K562 cells in a concentration dependent manner. In addition, Mere15 caused the disassembly of the microtubule cytoskeleton in K562 cells and inhibited the polymerization of tubulin in a cell free system via interaction with tubulin. We concluded that Mere15 was cytotoxic to K562 leukemia cells and the cytotoxicity was related to the apoptosis induction, cell cycle arrest and microtubule disassembly. These results implied that Merer15 was a broad spectrum anticancer polypeptide, not only cytotoxic to various solid cancer cells but also to the chronic myelogenous leukemia cells. Mere15 may have therapeutic potential for the treatment of leukemia.
References
[1]
Jimeno, J.; Lopez-Martin, J.A.; Ruiz-Casado, A.; Izquierdo, M.A.; Scheuer, P.J.; Rinehart, K. Progress in the clinical development of new marine-derived anticancer compounds. Anticancer Drugs 2004, 15, 321–329, doi:10.1097/00001813-200404000-00003.
[2]
Lin, X.; Liu, M.; Hu, C.; Liao, D.J. Targeting cellular proapoptotic molecules for developing anticancer agents from marine sources. Curr. Drug Targets 2010, 11, 708–715, doi:10.2174/138945010791170824.
[3]
Zheng, L.H.; Wang, Y.J.; Sheng, J.; Wang, F.; Zheng, Y.; Lin, X.K.; Sun, M. Antitumor peptides from marine organisms. Mar. Drugs 2011, 9, 1840–1859, doi:10.3390/md9101840.
[4]
Rawat, D.S.; Joshi, M.C.; Joshi, P.; Atheaya, H. Marine peptides and related compounds in clinical trial. Anticancer Agents Med. Chem. 2006, 6, 33–40, doi:10.2174/187152006774755519.
[5]
Janmaat, M.L.; Rodriguez, J.A.; Jimeno, J.; Kruyt, F.A.E.; Giaccone, G. Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol. Pharmacol. 2005, 68, 502–510.
Leng, B.; Liu, X.D.; Chen, Q.X. Inhibitory effects of anticancer peptide from Mercenaria on the BGC-823 cells and several enzymes. FEBS Lett. 2005, 579, 1187–1190, doi:10.1016/j.febslet.2004.12.089.
[8]
Zhang, B.; Wu, J.L. Isolation and characterization of glycopeptide MGP0405 from Meretrix meretrix. Chin. J. Nat. Med. 2006, 4, 230–233.
[9]
Wu, J.L.; Zhang, B.; Huang, C.H.; Zhu, X.C.; Wu, W.T. The antitumor activity of glycopeptide (MGP0501) from Meretrix meretrix in vitro. Pharm. Biotechnol. 2006, 13, 260–264.
[10]
Wang, C.; Liu, M.; Cheng, L.; Wei, J.; Wu, N.; Zheng, L.; Lin, X. A novel polypeptide from Meretrix meretrix Linnaeus inhibits the growth of human lung adenocarcinoma. Exp. Biol. Med. 2012, 237, 442–450, doi:10.1258/ebm.2012.011337.
[11]
Wang, H.; Wei, J.T.; Wu, N.; Liu, M.; Wang, C.C.; Liu, H.Z.; Lin, X.K. Mere15, a novel polypeptide from Meretrix meretrix, inhibits adhesion, migration and invasion of human lung cancer A549 cells via down-regulating MMPs. Pharm. Biol. 2012. in press.
[12]
Roychowdhury, S.; Talpaz, M. Managing resistance in chronic myeloid leukemia. Blood Rev. 2011, 25, 279–290, doi:10.1016/j.blre.2011.09.001.
[13]
Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418, doi:10.1023/A:1009616228304.
[14]
Higuchi, M.; Honda, T.; Proske, R.J.; Yeh, E.T. Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 1998, 17, 2753–2760.
[15]
Ozben, T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 2007, 96, 2181–2196, doi:10.1002/jps.20874.
[16]
Efferth, T.; Giaisi, M.; Merling, A.; Krammer, P.H.; Li-Weber, M. Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2007, 2, e693.
[17]
Luo, M.; Liu, X.; Zu, Y.; Fu, Y.; Zhang, S.; Yao, L.; Efferth, T. Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem. Biol. Interact. 2010, 188, 151–160, doi:10.1016/j.cbi.2010.07.009.
[18]
Martín, R.; Ibeas, E.; Carvalho-Tavares, J.; Hernández, M.; Ruiz-Gutierrez, V.; Nieto, M.L. Natural triterpenic diols promote apoptosis in astrocytoma cells through ROS-mediated mitochondrial depolarization and JNK activation. PLoS One 2009, 4, e5975.
[19]
Cyr, L.; Langler, R.; Lavigne, C. Cell cycle arrest and apoptosis responses of human breast epithelial cells to the synthetic organosulfur compound p-Methoxyphenyl p-Toluenesulfonate. Anticancer Res. 2008, 28, 2753–2763.
[20]
Huang, F.; Yang, Z.; Yu, D.; Wang, J.; Li, R.; Ding, G. Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via Caspase-3 activation and elevation of Bax/Bcl-2 ratio. Mar. Drugs 2012, 10, 2153–2165, doi:10.3390/md10102153.
[21]
Wei, S.-Y.; Li, M.; Tang, S.-A.; Sun, W.; Xu, B.; Cui, J.-R.; Lin, W.-H. Induction of apoptosis accompanying with G1 phase arrest and microtubule disassembly in human hepatoma cells by jaspolide B, a new isomalabaricane-type triterpene. Cancer Lett. 2008, 262, 114–122.
[22]
Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 2008, 25, 1487–1499, doi:10.1007/s11095-007-9516-9.
[23]
Yue, Q.X.; Liu, X.; Guo, D.A. Microtubule-binding natural products for cancer therapy. Planta Med. 2010, 76, 1037–1043.
[24]
Tim, M. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[25]
Ning, X.; Zhao, J.; Zhang, Y.; Cao, S.; Liu, M.; Ling, P.; Lin, X. A novel anti-tumor protein extracted from Meretrix meretrix Linnaeus induces cell death by increasing cell permeability and inhibiting tubulin polymerization. Int. J. Oncol. 2009, 35, 805–812.
[26]
Kumar, S.; Sitasawad, S.L. N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in H9c2 cells. Life Sci. 2009, 84, 328–336.
[27]
Wang, Z.; Tang, X.; Li, Y.; Leu, C.; Guo, L.; Zheng, X.; Zhu, D. 20-Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells. Eur. J. Pharm. 2008, 588, 9–17, doi:10.1016/j.ejphar.2008.03.045.