In particular niches of the marine environment, such as abyssal trenches, icy waters and hot vents, the base of the food web is composed of bacteria and archaea that have developed strategies to survive and thrive under the most extreme conditions. Some of these organisms are considered “extremophiles” and modulate the fatty acid composition of their phospholipids to maintain the adequate fluidity of the cellular membrane under cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even able to produce polyunsaturated fatty acids, contrarily to what was considered until the 1990s, helping the regulation of the membrane fluidity triggered by temperature and pressure and providing protection from oxidative stress. In marine ecosystems, bacteria may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic food webs. The present work aims to provide a comprehensive review on lipid production in bacteria and archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, contribute to marine food webs.
References
[1]
De Carvalho, C.C.C.R.; Fernandes, P. Production of metabolites as bacterial responses to the marine environment. Mar. Drugs 2010, 8, 705–727, doi:10.3390/md8030705.
[2]
Karner, M.B.; DeLong, E.F.; Karl, D.M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 2001, 409, 507–510.
[3]
Koga, Y.; Morii, H. Biosynthesis of ether-type polar lipids in Archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 2007, 71, 97–120, doi:10.1128/MMBR.00033-06.
[4]
Han, X.; Gross, R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry. J. Lipid Res. 2003, 44, 1071–1079, doi:10.1194/jlr.R300004-JLR200.
[5]
Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem. 2011, 80, 301–325, doi:10.1146/annurev-biochem-060409-092612.
[6]
Bergé, J.-P.; Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biothchnol. 2005, 96, 49–125.
[7]
Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 2006, 296, 1885–1899, doi:10.1001/jama.296.15.1885.
[8]
Calon, F. Omega-3 polyunsaturated fatty acids in Alzheimer’s disease: Key questions and partial answers. Curr. Alzheimer Res. 2011, 8, 470–478, doi:10.2174/156720511796391881.
[9]
Simopoulos, A.P. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 2011, 44, 203–215, doi:10.1007/s12035-010-8162-0.
[10]
Lu, F.S.; Nielsen, N.S.; Timm-Heinrich, M.; Jacobsen, C. Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids 2011, 46, 3–23.
[11]
Wijendran, V.; Huang, M.-C.; Diau, G.-Y.; Boehm, G.; Nathanielsz, P.W.; Brenna, J.T. Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in Baboon Neonates. Pediatr. Res. 2002, 51, 265–272, doi:10.1203/00006450-200203000-00002.
[12]
Peng, J.; Larondelle, Y.; Pham, D.; Ackman, R.G.; Rollin, X. Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp. Biochem. Physiol. 2003, 134, 335–348.
[13]
Okuyama, H.; Orikasa, Y.; Nishida, T.; Watanabe, K.; Morita, N. Bacterial genes responsible for the biosynthesis of Eicosapentaenoic and Docosahexaenoic acids and their heterologous expression. Appl. Environ. Microbiol. 2007, 73, 665–670, doi:10.1128/AEM.02270-06.
[14]
De Carvalho, C.C.C.R. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res. Microbiol. 2012, 163, 125–136, doi:10.1016/j.resmic.2011.11.003.
Valentine, R.C.; Valentine, D.L. Omega-3 fatty acids in cellular membranes: A unified concept. Prog. Lipid Res. 2004, 43, 383–402.
[17]
Okuyama, H.; Orikasa, Y.; Nishida, T. Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl. Environ. Microbiol. 2008, 74, 570–574.
[18]
Miyashita, K.; Nara, E.; Ota, T. Oxidative stability of polyunsaturated fatty acids in an aqueous solution. Biosci. Biotechnol. Biochem. 1993, 57, 1638–1640, doi:10.1271/bbb.57.1638.
[19]
Yazu, K.; Yamamoto, Y.; Niki, E.; Ukegawa, K. Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles. Lipids 1998, 33, 597–600, doi:10.1007/s11745-998-0245-3.
[20]
Lovern, J.A. Fat metabolism in fishes: The fats of some plankton crustacea. Biochem. J. 1935, 30, 387–390.
[21]
Dalsgaard, J.; St John, M.; Kattner, G.; Muller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 2003, 46, 225–340, doi:10.1016/S0065-2881(03)46005-7.
[22]
Sinensky, M. Homeoviscous adaptation-A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525, doi:10.1073/pnas.71.2.522.
[23]
MacElroy, M. Some comments on the evolution of extremophiles. Biosytems 1974, 6, 74–75, doi:10.1016/0303-2647(74)90026-4.
[24]
Bowers, K.; Mesbah, N.; Wiegel, J. Biodiversity of poly-extremophilic bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst. 2009, 5, 9.
[25]
Delong, E.F.; Yayanos, A.A. Properties of the glucose-transport system in some deep-sea bacteria. Appl. Environ. Microbiol. 1987, 53, 527–532.
Lipp, J.S.; Morono, Y.; Inagaki, F.; Hinrichs, K.-U. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 2008, 454, 991–994.
[28]
Canganella, F.; Wiegel, J. Extremophiles: From abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 2011, 98, 253–279, doi:10.1007/s00114-011-0775-2.
Metz, J.G.; Roessler, P.; Facciotti, D.; Levering, C.; Dittrich, F.; Lassner, M.; Valentine, R.; Lardizabal, K.; Domergue, F.; Yamada, A.; Yazawa, K.; Knauf, V.; Browse, J. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 2001, 293, 290–293, doi:10.1126/science.1059593.
[31]
Bowman, J.P.; Gosink, J.J.; McCammon, S.A.; Lewis, T.E.; Nichols, D.S.; Nichols, P.D.; Skerratt, J.H.; Staley, J.T.; McMeekin, T.A. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: Psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. Bacteriol. 1998, 48, 1171–1180.
[32]
Shulse, C.N.; Allen, E.E. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages. PLoS One 2011, 6, e20146, doi:10.1371/journal.pone.0020146.
[33]
De Rosa, M.; Gambacorta, A.; Huber, R.; Lanzotti, V.; Nicolaus, B.; Stetter, K.O.; Trincone, A. Microbiology of Extreme Environments and Its Potential for Biotechnology; da Costa, M.S., Duarte, J.C., Williams, R.A.D., Eds.; Springer: New York, NY, USA, 1989; pp. 167–173.
[34]
Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life. Nat. Prod. Rep. 2009, 26, 44–71, doi:10.1039/b800164m.
[35]
Stetter, K.O. Extremophiles and their adaptation to hot environments. FEBS Lett. 1999, 452, 22–25, doi:10.1016/S0014-5793(99)00663-8.
[36]
Uda, I.; Sugai, A.; Itoh, Y.H.; Itoh, T. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 2001, 36, 103–105, doi:10.1007/s11745-001-0914-2.
[37]
Nicolas, J. A molecular dynamics study of an archaeal tetraether lipid membrane: Comparison with a dipalmitoylphosphatidylcholine lipid bilayer. Lipids 2005, 40, 1023–1030, doi:10.1007/s11745-005-1465-2.
[38]
Van de Vossenberg, J.L.C.M.; Driessen, A.J.M.; Grant, D.; Konings, W.N. Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles 1999, 3, 253–257, doi:10.1007/s007920050124.
[39]
Vreeland, R.H.; Anderson, R.; Murray, R.G. Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. J. Bacteriol. 1984, 160, 879–883.
[40]
Russell, N.J. Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J. Bioenerg. Biomembr. 1989, 21, 93–113, doi:10.1007/BF00762214.
[41]
Coker, J.A.; DasSarma, P.; Kumar, J.; Müller, J.; DasSarma, S. Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: Responses to changes in salinity and temperature. Saline Sys. 2007, 3, 6, doi:10.1186/1746-1448-3-6.
[42]
McElhaney, R.N. The effects of alterations in the physical state of the membrane lipids on the ability of Acholeoplasma laidlawii B to grow at different temperatures. J. Mol. Biol. 1974, 84, 145–157, doi:10.1016/0022-2836(74)90218-6.
[43]
Fang, J.; Barcelona, M.J.; Nogi, Y.; Kato, C. Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep-Sea Res. 2000, 47, 1173–1182, doi:10.1016/S0967-0637(99)00080-1.
[44]
Son, B.; Kim, J.; Choi, H. A new diacylgalactolipid containing 4Z-16:1 from the marine cyanobacterium Oscillatoria sp. Lipids 2001, 36, 427–429, doi:10.1007/s11745-001-0739-z.
[45]
Dembitsky, V.M.; Srebnik, M. Natural halogenated fatty acids: Their analogues and derivatives. Prog. Lipid Res. 2002, 41, 315–367, doi:10.1016/S0163-7827(02)00003-6.
[46]
Wu, M.; Milligan, K.E.; Gerwick, W.H. Three new malyngamides from the marine cyanobacterium Lyngbya majuscula. Tetrahedron 1997, 53, 15983–15990.
[47]
Kaneda, T. Iso- and Anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302.
[48]
Wollenweber, H.W.; Rietschel, E.T.; Hofstad, T.; Weintraub, A.; Lindbert., A.A. Nature, type of linkage, quantity, and absolute configuration of (3-hydroxy) fatty acids in lipopolysaccharides from Bacteroides fragilis NCTC 9343 and related strains. J. Bacteriol. 1980, 144, 898–903.
[49]
Sanchez, L.M.; Wong, W.R.; Riener, R.M.; Schulze, C.J.; Linington, R.G. Examining the fish microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. Plos One 2012, 7, e35398.
[50]
Spiteller, G. Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 2005, 40, 755–771, doi:10.1007/s11745-005-1438-5.
[51]
Shirasaka, N.; Nishi, K.; Shimizu, S. Biosynthesis of furan fatty acids (F-acids) by a marine bacterium, Shewanella putrefaciens. Biochim. Biophys. Acta 1997, 1346, 253–260, doi:10.1016/S0005-2760(97)00042-8.
[52]
Poralla, K.; K?nig, W.A. The occurrence of ω-cycloheptane fatty acids in a thermo-acidophilic bacillus. FEMS Microbiol. Lett. 1983, 16, 303–306.
[53]
Kates, M.; Moldoveanu, N.; Stewart, L.C. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1993, 1169, 46–53.
[54]
Aries, E.; Doumenq, P.; Artaud, J.; Molinet, J.; Bertrand, J.C. Occurrence of fatty acids linked to non-phospholipid compounds in the polar fraction of a marine sedimentary extract from Carteau cove, France. Org. Geochem. 2001, 32, 193–197, doi:10.1016/S0146-6380(00)00153-4.
[55]
Shirasaka, N.; Nishi, K.; Shimizu, S. Occurrence of a furan fatty acid in marine bacteria. Biochim. Biophys. Acta 1995, 1258, 225–227.
[56]
Alvarez, H.M.; Pucci, O.H.; Steinbüchel, A. Lipid storage compounds in marine bacteria. Appl. Microbiol. Biotechnol. 1997, 47, 132–139, doi:10.1007/s002530050901.
[57]
Nakano, M.; Iehata, S.; Tanaka, R.; Maeda, H. Extracellular neutral lipids produced by the marine bacteria Marinobacter sp. Biocontrol Sci. 2012, 17, 69–75, doi:10.4265/bio.17.69.
[58]
De Carvalho, C.C.C.R.; ds Fonseca, M.M.R. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 2005, 51, 389–399, doi:10.1016/j.femsec.2004.09.010.
[59]
Decho, A.W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 2000, 20, 1257–1273, doi:10.1016/S0278-4343(00)00022-4.
[60]
Otto Ortega-Morales, B.; Jesus Chan-Bacab, M.; del Carmen De la Rosa-Garcia, S.; Carlos Camacho-Chab, J. Valuable processes and products from marine intertidal microbial communities. Curr. Opin. Biotechnol. 2010, 21, 346–352, doi:10.1016/j.copbio.2010.02.007.
[61]
Freese, E.; Rütters, H.; K?ster, J.; Rullk?tter, J.; Sass, H. Gammaproteobacteria as a possible source of eicosapentaenoic acid in anoxic intertidal sediments. Microb. Ecol. 2009, 57, 444–454, doi:10.1007/s00248-008-9443-2.
[62]
Sherr, E.B.; Sherr, B.F.; Albright, L.J. Bacteria: Link or sink? Science 1987, 235, 88.
[63]
Phillips, N.W. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sci. 1984, 35, 283–298.
[64]
Ahlgren, G.; Lundstedt, L.; Brett, M.; Forsberg, C. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 1990, 12, 809–818, doi:10.1093/plankt/12.4.809.
Brett, M.; Müller-Navarra, D. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw. Biol. 1997, 38, 483–499, doi:10.1046/j.1365-2427.1997.00220.x.
[67]
Albers, C.S.; Kattner, G.; Hagen, W. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations. Mar. Chem. 1996, 55, 347–358, doi:10.1016/S0304-4203(96)00059-X.
[68]
Yazawa, K. Production of eicosapentaenoic acid from marine bacteria. Lipids 1996, 31, S297–S300, doi:10.1007/BF02637095.
Wallis, J.G.; Watts, J.L.; Browse, J. Polyunsaturated fatty acid synthesis: What will they think of next? Trends Biochem. Sci. 2002, 27, 467–473, doi:10.1016/S0968-0004(02)02168-0.
[71]
Ustach, J.F. Algae, bacteria and detritus as food for the harpacticoid copepod, Heteropsyllus pseudonunni Coull and Palmer. J. Exp. Mar. Biol. Ecol. 1982, 64, 203–214, doi:10.1016/0022-0981(82)90010-7.
[72]
Sogard, S.M. Utilization of meiofauna as a food source by a grassbed fish, the spotted dragonet Callionymus pauciradiatus. Mar. Ecol. Prog. Ser. 1984, 17, 183–191, doi:10.3354/meps017183.
[73]
Decho, A.W. Water-cover influences on diatom ingestion rates by meiobenthic copepods. Mar. Ecol. Prog. Ser. 1986, 33, 139–146, doi:10.3354/meps033139.
[74]
Norsker, N.-H.; St?ttrup, J.G. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 1994, 125, 155–166, doi:10.1016/0044-8486(94)90292-5.
[75]
De Troch, M.; Mees, J.; Wakwabi, E. Diets of abundant fishes from beach seine catches in seagrass beds of a tropical bay (Gazi Bay, Kenya). Belg. J. Zool. 1998, 128, 135–154.
[76]
Buffan-Dubau, E.; Carman, K.R. Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnol. Oceanogr. 2000, 45, 381–395, doi:10.4319/lo.2000.45.2.0381.
[77]
De Troch, M.; Boeckx, P.; Cnudde, C.; Van Gansbeke, D.; Vanreusel, A.; Vincx, M.; Caramujo, M.J. Bioconversion of fatty acids at the basis of marine food webs: Insights from a compound-specific stable isotope analysis. Mar. Ecol. Prog. Ser. 2012, 465, 53–67, doi:10.3354/meps09920.
[78]
Stevens, C.J.; Limén, H.; Pond, D.W.; Gélinas, Y.; Juniper, S.K. Ontogenetic shifts in the trophic ecology of two alvinocaridid shrimp species at hydrothermal vents on the Mariana Arc, western Pacific Ocean. Mar. Ecol. Prog. Ser. 2008, 356, 225–237, doi:10.3354/meps07270.
[79]
?ajbidor, J.; Dobro?ová, S.; ?ertík, M. Arachidonic acid production by Mortierella sp. S-17 influence of C/N ratio. Biotechnol. Lett. 1990, 12, 455–456, doi:10.1007/BF01024404.
Yano, Y.; Nakayama, A.; Yoshida, K. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 1997, 63, 2572–2577.
[82]
Caron, D.A. Symbiosis and Mixotrophy among Pelagic Microorganisms. In Microbial Ecology of the Oceans; Kirchman, D.L., Ed.; Wiley-Liss: New York, NY, USA, 2000; pp. 495–523.
[83]
Sherr, E.B.; Sherr, B.F. Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 2007, 352, 187–197.
[84]
Strom, S.L. Bacterivory: Interactions between Bacteria and Their Grazers. In Microbial Ecology of the Oceans; Kirchman, D.L., Ed.; Wiley-Liss: New York, NY, USA, 2000; pp. 286–351.
[85]
Caron, D.A.; Goldman, J.C. Nutrient Regeneration. In Ecology of Marine Protozoa; Capriulo, G.M., Ed.; Oxford University Press: New York, NY, USA, 1990; pp. 283–306.
[86]
Stoecker, D.K.; McDowell, C. Predation on protozoa: Its importance to zooplankton. J. Plankton Res. 1990, 12, 891–908, doi:10.1093/plankt/12.5.891.
[87]
Gifford, D.J.; Dagg, M.J. The microzooplankton-mesozooplankton link: Consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murkukawa. Mar. Microb. Food Webs 1991, 5, 161–177.
[88]
Fauré-Fremiet, E. Contribution à la connaissance des infusoires planctoniques. Bull. Biol. Fr. Bel. 1924, 6 (Suppl.), 1–171.
[89]
Pomeroy, L.R. The ocean’s food web, a changing paradigm. Bioscience 1974, 24, 499–504, doi:10.2307/1296885.
[90]
Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263, doi:10.3354/meps010257.
[91]
Sherr, E.; Sherr, B.F. Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 1988, 33, 1225–1227, doi:10.4319/lo.1988.33.5.1225.
[92]
Li, W.K.W.; Rao, D.V.S.; Harrison, W.G.; Smith, J.C.; Cullen, J.J.; Irwin, B.; Platt, T. Autotrophic picoplankton in the tropical ocean. Science 1983, 219, 292–295.
[93]
Stockner, J.G.; Antia, N.J. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 1986, 43, 2472–2503, doi:10.1139/f86-307.
[94]
Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv. Microb. Ecol. 1993, 13, 327–369, doi:10.1007/978-1-4615-2858-6_8.
[95]
Desvilettes, C.; Bec, A. Formation and Transfer of Fatty Acids in Aquatic Microbial Food Webs: Role of Heterotrophic Protists. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 25–42.
[96]
Breteler, W.C.M.K.; Schogt, N.; Baas, M.; Schouten, S.; Kraay, G.W. Trophic upgrading of food quality by protozoans enhancing copepod growth: Role of essential lipids. Mar. Biol. 1999, 135, 191–198, doi:10.1007/s002270050616.
[97]
Bec, A.; Martin-Creuzburg, D.; Elert, E.V. Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol. Oceanogr. 2006, 51, 1699–1707.
[98]
Sanders, R.W.; Wickham, S.A. Planktonic protozoa and metazoa: Predation, food quality and population control. Mar. Microb. Food Webs 1993, 7, 197–223.
[99]
Veloza, A.; Chu, F.-L.; Tang, K. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 2006, 148, 779–788, doi:10.1007/s00227-005-0123-1.
[100]
Zhukova, N.V.; Kharlamenko, V.I. Sources of essential fatty acids in the marine microbial loop. Aquat. Microb. Ecol. 1999, 17, 153–157.
[101]
Vera, A.; Desvilettes, C.; Bec, A.; Bourdier, G. Fatty acid composition of freshwater heterotrophic flagellates: An experimental study. Aquat. Microb. Ecol. 2001, 25, 271–279.
[102]
Broglio, E.; Jónasdóttir, S.H.; Calbet, A.; Jakobsen, H.H.; Saiz, E. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: Relationship with prey fatty acid composition. Aquat. Microb. Ecol. 2003, 31, 267–278, doi:10.3354/ame031267.
[103]
Bec, A.; Desvilettes, C.; Vera, A.; Fontvielle, D.; Bourdier, G. Nutritional value of different food sources for the bennthic daphnidae Simocephalus vetulus: Role of fatty acids. Arch. Hydrobiol. 2003, 156, 145–163, doi:10.1127/0003-9136/2003/0156-0145.
[104]
Ratledge, C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 2004, 86, 807–815, doi:10.1016/j.biochi.2004.09.017.
[105]
Kobayashi, T.; Sakaguchi, K.; Matsuda, T.; Abe, E.; Hama, Y.; Hayashi, M.; Honda, D.; Okita, Y.; Sugimoto, S.; Okino, N.; et al. Increase of eicosapentaenoic acid in Thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Appl. Environ. Microbiol. 2011, 77, 3870–3876.
[106]
Parrish, C.C.; Whiticar, M.; Puvanendran, V. Is w6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna? Limnol. Oceanogr. 2007, 52, 476–479.
[107]
Raghukumar, S. Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Mar. Biotechnol. 2008, 10, 631–640, doi:10.1007/s10126-008-9135-4.
[108]
Volkman, J.K. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org. Geochem. 2005, 36, 139–159, doi:10.1016/j.orggeochem.2004.06.013.
[109]
Martin-Creuzburg, D.; Elert, E.V. Ecological Significance of Sterols in Aquatic Food Webs. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 43–64.