全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境科学  2009 

Reduction of Nitrobenzene by Iron oxides Bound Fe(Ⅱ)System at Different pH Values
不同pH下铁氧化物表面结合铁系统还原硝基苯的研究

Keywords: iron oxides,reductive transformation,nitrobenzene
铁氧化物
,表面结合铁,还原转化,硝基苯

Full-Text   Cite this paper   Add to My Lib

Abstract:

Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(Ⅱ) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(Ⅱ) on surfaces and form iron oxides bound Fe(Ⅱ) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(Ⅱ) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(Ⅱ) in solution, the adsorbed Fe(Ⅱ) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(Ⅱ) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(Ⅱ) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(Ⅱ) could he converted to Fe(OH)_2 and the newly formed Fe(OH)_2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133