Glycomics turned out to be a very extensive project where its subdivision is consequently emerging. This is seen by the growing number of terminologies used to define subprojects concerning particular classes of bioactive carbohydrates. Sulfated fucans (SFs) and sulfated galactans (SGs) are relatively new classes of sulfated polysaccharides (SPs) that occur mostly in marine organisms, and exhibit a broad range of medicinal effects. Their structures are taxonomically dependent, and their therapeutic actions include benefits in inflammation, coagulation, thrombosis, angiogenesis, cancer, oxidation, and infections. Some red algae, marine angiosperm and invertebrates express SPs of unique structures composed of regular repeating oligomeric units of well-defined sulfation patterns. This fine pattern of structural regularity is quite rare among any naturally occurring long SPs, and enables accurate structure-biofunction correlations. Seeing that, fucanomics and galactanomics may comprise distinguished glycomics subprojects. We hereby discuss the relevance that justifies the international recognition of these subprojects in the current glycomics age associated with the beneficial outcomes that these glycans may offer in drug development.
References
[1]
Hart, G.W.; Copeland, R.J. Glycomics hits the big time. Cell 2010, 143, 672–676, doi:10.1016/j.cell.2010.11.008. 21111227
[2]
Bertozzi, C.R.; Sasisekharan, R. Glycomics. In Essentials of Glycobiology, 2nd; Varki, A., Cummings, J.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E, Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2009. Chapter 48.
[3]
Pomin, V.H. Fucanome and galactanome: Marine glycomics contribution. J. Glycobiol. 2011, 1.
[4]
Raman, R.; Raguram, S.; Venkataraman, G.; Paulson, J.C.; Sasisekharan, R. Glycomics: An integrated systems approach to structure-function relationships of glycans. Nat. Methods 2005, 2, 817–824, doi:10.1038/nmeth807. 16278650
[5]
Pomin, V.H. Current glycomics’ approaches: Subprojects and journals. J. Glycomics Lipidomics 2011, 2, 1–3.
[6]
Gesslbauer, B.; Rek, A.; Falsore, F.; Rajkovic, E.; Kungl, A.J. Proteoglycanomics: Tools to unravel the biological function of glycosamynoglycnas. Proteomics 2007, 7, 2870–2880, doi:10.1002/pmic.200700176. 17654462
[7]
Gesslbauer, B.; Kungl, A. Glycomics approaches toward drug development: Therapeutically exploring the glycosaminoglycanome. Curr. Opin. Mol. Ther. 2006, 8, 521–528. 17243488
[8]
Lammana, W.C.; Kalus, I.; Padva, M.; Baldwin, R.J.; Merry, C.R.L.; Dierks, T. The heparanome—The enigma encoding and decoding heparan sulfate sulfation. J. Biotechnol. 2007, 129, 290–307, doi:10.1016/j.jbiotec.2007.01.022. 17337080
[9]
Turnbull, J.E. Heparan sulfate glycomics: Towards systems biology strategies. Biochem. Soc. Trans. 2010, 38, 1356–1360, doi:10.1042/BST0381356. 20863313
[10]
Tran, V.M.; Nguyen, T.K.N.; Raman, K.; Kuberan, B. Applications of isotopes in advancing structural and functional heparanomics. Anal. Bioanal. Chem. 2011, 399, 559–570, doi:10.1007/s00216-010-4166-x. 20838780
[11]
Cohen, M.; Varki, A. The Sialome—Far more than the sum of its parts. OMICS 2010, 14, 455–464, doi:10.1089/omi.2009.0148. 20726801
[12]
Tissot, B.; North, S.J.; Ceroni, A.; Pang, P.C.; Panico, M.; Rosati, F.; Capone, A.; Haslam, S.M.; Dell, A.; Morris, H.R. Glycoproteomics: Past, present and future. FEBS Lett. 2010, 583, 1728–1735.
[13]
Zarei, M.; Müthing, J.; Peter-Katalini?, J.; Bindila, L. Separation and identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: Toward glycolipidomics screening of animal cell lines. Glycobiology 2010, 20, 118–126, doi:10.1093/glycob/cwp154. 19797321
[14]
Pomin, V.H. Recent demands of Glycomics: Subprojects and the role of new journals. J. Glycobiol. 2011, 1.
[15]
Pomin, V.H. Review: An overview about the structure-function relationship of marine sulfated homopolysaccharides with regular chemical structures. Biopolymers 2009, 91, 601–609, doi:10.1002/bip.21200. 19353634
[16]
Pomin, V.H.; Mour?o, P.A. Structure, biology, evolution and medical importance of sulfated fucans and galactans. Glycobiology 2008, 18, 1016–1027, doi:10.1093/glycob/cwn085.
[17]
Mulloy, B.; Ribeiro, A.C.; Vieira, R.P.; Mour?o, P.A. Structural analysis of sulfated fucans by high-field NMR. Braz. J. Med. Biol. Med. 1994, 27, 515–521.
[18]
Daniel, R.; Chevolot, L.; Carrascal, M.; Tissot, B.; Mour?o, P.A.S.; Abian, J. Electrospray ionization mass spectrometry of oligosaccharides derived from fucoidan of Ascophyllum nodosum. Carbohydr. Res. 2007, 342, 826–834, doi:10.1016/j.carres.2007.01.009.
[19]
Jiao, G.; Yu, G.; Zhang, J.; Ewart, S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–223, doi:10.3390/md9020196. 21566795
[20]
Berteau, O.; Mulloy, B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003, 13, 29–40, doi:10.1093/glycob/cwg058.
[21]
Pomin, V.H. Structural and functional insights into sulfated galactans: A systematic review. Glycoconjugate J. 2010, 27, 1–12, doi:10.1007/s10719-009-9251-z.
[22]
Delattre, C.; Fenoradosoa, T.A.; Michaud, P. Galactans: An overview of their most important sourcing and applications as natural polysaccharides. Braz. Arch. Biol. Technol. 2011, 54, 1075–1092.
Chevolot, L.; Mulloy, B.; Ratiskol, J.; Foucault, A.; Colliec-Jouault, S. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr. Res. 2001, 330, 529–535, doi:10.1016/S0008-6215(00)00314-1. 11269406
[25]
Bilan, M.I.; Grachev, A.A.; Ustuzhanina, N.E.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Structure of fucoidan from the brown seaweed Fucus evanescens. Carbohydr. Res. 2002, 337, 719–730, doi:10.1016/S0008-6215(02)00053-8.
[26]
Nishino, T.; Naguno, T. Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurone. Carbohydr. Res. 1991, 211, 77–90, doi:10.1016/0008-6215(91)84147-7.
[27]
Chizhov, A.O.; Dell, A.; Morris, H.R.; Haslam, S.M.; McDowell, R.A.; Shashkov, A.S. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr. Res. 1999, 320, 108–119, doi:10.1016/S0008-6215(99)00148-2.
[28]
Matsubara, K.; Matsuura, Y.; Bacic, A.; Liao, M.; Hori, K.; Miyazawa, K. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. Int. J. Biol. Macromol. 2001, 28, 395–399, doi:10.1016/S0141-8130(01)00137-4.
[29]
Bilan, M.I.; Vinogradova, E.V.; Shashkov, A.S.; Usov, A.I. Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense (Bryopsidales, Chlorophyta). Carbohydr. Res. 2007, 342, 586–596, doi:10.1016/j.carres.2006.11.008.
[30]
Farias, E.H.; Pomin, V.H.; Valente, A.-P.; Nader, H.B.; Rocha, H.A.; Mour?o, P.A. A preponderantly 4-sulfated, 3-linked galactan from the Green alga Codium isthmocladum. Carbohydr. Res. 2008, 18, 250–259.
[31]
Kolender, A.A.; Matulewicz, M.C. Sulfated polysaccharides from the red seaweed Georgiella confluens. Carbohydr. Res. 2002, 337, 57–68, doi:10.1016/S0008-6215(01)00283-X.
[32]
Zhang, Q.; Li, N.; Liu, X.; Zhao, Z.; Li, Z.; Xu, Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 2004, 339, 105–111, doi:10.1016/j.carres.2003.09.015.
[33]
Salehi, P.; Dashiti, Y.; Tajabadi, F.M.; Safidkon, F.; Rabei, R. Structural and compositional characteristics of a sulfated galactan from the red alga Gracilariopsis persica. Carbohydr. Res. 2011, 83, 1570–1574.
[34]
Mulloy, B.; Ribeiro, A.-C.; Alves, A.P.; Vieira, R.P.; Mour?o, P.A. Sulfated fucans from echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the 0-2 and 0-4 positions. J. Biol. Chem. 2004, 269, 22113–22123.
[35]
Alves, A.P.; Mulloy, B.; Moy, G.W.; Vacquier, V.D.; Mour?o, P.A. Females of the sea urchin Strongylocentrotus purpuratus differ in the structures of their egg jelly sulfated fucans. Glycobiology 1998, 8, 939–946, doi:10.1093/glycob/8.9.939.
[36]
Vilela-Silva, A.C.E.S.; Alves, A.P.; Valente, A.-P.; Vacquier, V.D.; Mour?o, P.A. Structure of the sulfated alpha-L-fucan from the egg jelly coat of the sea urchin Strongylocentrotus franciscanus: patterns of preferential 2-O- and 4-O-sulfation determine sperm cell recognition. Glycobiololy 1999, 9, 927–233, doi:10.1093/glycob/9.9.927.
[37]
Vilela-Silva, A.C.E.S.; Castro, M.O.; Valente, A.-P.; Biermann, C.H.; Mour?o, P.A. Sulfated fucans from the egg jellies of the closely related sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus pallidus ensure species-specific fertilization. J. Biol. Chem. 2002, 277, 379–387. 11687579
[38]
Alves, A.P.; Mulloy, B.; Diniz, J.A.; Mour?o, P.A. Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins. J. Biol. Chem. 1997, 272, 6965–6971, doi:10.1074/jbc.272.11.6965. 9054385
[39]
Castro, M.O.; Pomin, V.H.; Santos, L.L.; Vilela-Silva, A.C.; Hirohashi, N.; Pol-Fachin, L.; Verli, H.; Mour?o, P.A. A unique 2-sulfated beta-galactan from the egg jelly of the sea urchin Glyptocidaris crenularis: Conformation flexibility versus induction of the sperm acrosome reaction. J. Biol. Chem. 2009, 284, 18790–18800, doi:10.1074/jbc.M109.005702. 19403528
[40]
Farias, W.R.; Valente, A.-P.; Pereira, M.S.; Mour?o, P.A. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. 2000, 275, 29299–29307, doi:10.1074/jbc.M002422200. 10882718
[41]
Pereira, M.G.; Benevides, N.M.; Melo, M.R.; Valente, A.-P.; Melo, F.R.; Mour?o, P.A. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr. Res. 2005, 340, 2015–2023, doi:10.1016/j.carres.2005.05.018.
[42]
Carlucci, M.J.; Pujol, C.A.; Ciancia, M.; Noseda, M.D.; Matulevicz, M.C.; Damonte, E.B.; Cerezo, A.S. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: Correlation between structure and biological activity. Int. J. Biol. Macromol. 1997, 20, 97–105, doi:10.1016/S0141-8130(96)01145-2.
[43]
Penman, A.; Rees, D.A. Carrageenans. IX. Methylation analysis of galactan sulphates from Furcellaria fastigiata, Gigartina canaliculata, Gigartina chamissoi, Gigartina atropurpurea, Ahnfeltia durvillaei, Gymnogongrus furcellatus, Eucheuma isiforme, Eucheuma uncinatum, Aghardhiella tenera, Pachymenia hymantophora, and Gloiopeltis cervicornis. Structure of xi-carrageenan. J. Chem. Soc. 1973, 19, 2182–2187.
[44]
Mour?o, P.A.; Perlin, A.S. Structural features of sulfated glycans from the tunic of Styela plicata (Chordata-Tunicata). A unique occurrence of L-galactose in sulfated polysaccharides. Eur. J. Biochem. 1987, 166, 431–436, doi:10.1111/j.1432-1033.1987.tb13534.x.
[45]
Santos, J.A.; Mulloy, B.; Mour?o, P.A. Structural diversity among sulfated alpha-L-galactans from ascidians (tunicates). Studies on the species Ciona intestinalis and Herdmania monus. Eur. J. Biochem. 1992, 204, 669–677, doi:10.1111/j.1432-1033.1992.tb16680.x.
[46]
Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; Piccoli, A.; Totani, L.; Ustyuzhanina, N.E.; Bilan, M.I.; Usov, A.I.; Grachev, A.A.; Morozevich, G.E.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. 17296677
[47]
Foxal, C.; Watson, S.R.; Dowbenko, D.; Lasky, L.A.; Kiso, M.; Hasegawa, A.; Asa, D.; Brandley, B.K. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J. Cell. Biol. 1992, 117, 895–902, doi:10.1083/jcb.117.4.895. 1374413
[48]
Game, S.M.; Rajapurohit, P.K.; Clifford, M.; Bird, M.I.; Priest, R.; Bovin, N.V.; Nifantiev, N.E.; O’Beirne, G.; Cook, N.D. Scintillation proximity assay for E-, P-, and L-selectin utilizing polyacrylamide-based neoglycoconjugates as ligands. Anal. Biochem. 1998, 258, 127–135, doi:10.1006/abio.1998.2576. 9527858
[49]
Mourao, P.A.; Pereira, M.S. Searching for alternatives to heparin: Sulfated fucans from marine invertebrates. Trends Cardiovasc. Med. 1999, 9, 225–232, doi:10.1016/S1050-1738(00)00032-3. 11094330
[50]
Mour?o, P.A. Use of sulfated fucans as anticoagulant and antithrombotic agents: Future perspectives. Curr. Pharm. Des. 2004, 10, 967–981, doi:10.2174/1381612043452730. 15078127
[51]
Guerrini, M.D.; Beccati, Z.; Shriver, Z.; Naggi, A.; Viswanathan, K.; Bisio, A.; Capila, I.; Lansing, J.C.; Guglieri, S.; Fraser, B.; et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 2008, 26, 669–675, doi:10.1038/nbt1407. 18437154
[52]
Kishimoto, T.K.; Viswanathan, K.; Ganguly, T.; Elankumaran, S.; Smith, S.; Pelzer, K.; Lansing, J.C.; Sriranganathan, N.; Zhao, G.; Galcheva-Gargova, Z.; et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N. Engl. J. Med. 2008, 358, 2457–2467, doi:10.1056/NEJMoa0803200. 18434646
Pomin, V.H.; Pereira, M.S.; Valente, A.P.; Tollefsen, D.M.; Pav?o, M.S.G.; Mour?o, P.A. Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology 2005, 15, 369–381. 15590773
[55]
Glauser, B.F.; Rezende, R.M.; Melo, F.R.; Pereira, M.S.; Francischetti, I.M.; Monteiro, R.Q.; Rezaie, A.R.; Mour?o, P.A. Anticoagulant activity of a sulfated galactan: Serpin-independent effect and specific interaction with factor Xa. Thromb. Haemostasis. 2009, 102, 1183–1193.
[56]
Koyanagi, S.; Tanigawa, N.; Nakagawa, H.; Soeda, S.; Shimeno, H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 2003, 65, 173–179, doi:10.1016/S0006-2952(02)01478-8. 12504793
[57]
Soeda, S.; Kozako, T.; Iwata, K.; Shimeno, H. Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: Its possible mechanism of action. Biochim. Biophys. Acta 2000, 1497, 127–134, doi:10.1016/S0167-4889(00)00052-5. 10838166
[58]
Matsubara, K.; Mori, M.; Matsumoto, H.; Hori, K.; Miyazawa, K. Antiangiogenic properties of a sulfated galactan isolated from a marine green alga, Codium cylindricum. J. Appl. Phycol. 2003, 15, 87–90, doi:10.1023/A:1022958222915.
[59]
Croci, D.O.; Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; Piccoli, A.; Totani, L.; Ustyuzhanina, N.E.; Bilan, M.I.; Usov, A.I.; Grachev, A.A.; et al. Fucans, but not fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 2001, 6.
[60]
Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845, doi:10.1021/jf010908o. 11829654
[61]
de Souza, M.R.; Marques, C.T.; Dore, C.M.G.; da Silva, F.R.F.; Rocha, H.A.O.; Leite, E.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 2007, 19, 153–160, doi:10.1007/s10811-006-9121-z. 19396353
[62]
Costa, L.S.; Fidelis, G.P.; Telles, C.B.; Dantas-Santos, N.; Camara, R.B.; Cordeiro, S.L.; Costa, M.S.; Almeida-Lima, J.; Melo-Silveira, R.F.; Oliveira, R.M.; et al. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar. Drugs 2011, 9, 952–966, doi:10.3390/md9060952.
[63]
Barahona, T.; Encinas, M.V.; Mansilla, A.; Matsuhiro, B.; Zú?iga, E.A. A sulfated galactan with antioxidant capacity from the green variant of tetrasporic Gigartina skottsbergii (Gigartinales, Rhodophyta). Carbohydr. Res. 2012, 347, 114–120, doi:10.1016/j.carres.2011.11.014.
[64]
Barahona, T.; Chandía, N.P.; Encinas, M.V.; Matsohiro, B.; Zú?iga, E.A. Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocol. 2011, 25, 529–535, doi:10.1016/j.foodhyd.2010.08.004.
[65]
Adhikari, U.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemicals 2006, 67, 2474–2482, doi:10.1016/j.phytochem.2006.05.024.
Pierre, G.; Sopena, V.; Juin, C.; Mastouri, A.; Graber, M.; Maugard, T. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol. Bioprocess Eng. 2011, 16, 937–945, doi:10.1007/s12257-011-0224-2.
[68]
Aquino, R.S.; Grativol, C.; Mour?o, P.A. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One 2011, 28.
[69]
Cinelli, L.P.; Castro, M.O.; Santos, L.L.; Garcia, C.R.; Vilela-Silva, A.C.; Mour?o, P.A. Expression of two different sulfated fucans by females of Lytechinus variegatus may regulate the seasonal variation in the fertilization of the sea urchin. Glycobiology 2007, 17, 877–885, doi:10.1093/glycob/cwm058.
[70]
Honya, M.; Morim, M.; Anzai, M.; Araki, Y.; Nisizawa, K. Monthly changes in the content of fucans their constituent sugars and sulphate in cultured Laminaria japonica. Hydrobiologia 1999, 398, 411–416, doi:10.1023/A:1017007623005.
[71]
Andrade, L.R.; Leal, R.N.; Noseda, M.; Duarte, M.E.; Pereira, M.S.; Mour?o, P.A.; Farina, M.; Filho, G.M.A. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Mar. Pollut. Bull. 2010, 60, 1482–1488, doi:10.1016/j.marpolbul.2010.05.004. 20553858
Maaroufi, R.M.; Jozefowicz, M.; Tapon-Bretaudière, J.; Fischer, A.M. Mechanism of thrombin inhibition by antithrombin and heparin cofactor II in the presence of heparin. Biomaterials 1997, 18, 203–211, doi:10.1016/S0142-9612(96)00125-1. 9031720
[74]
Blossom, D.B.; Kallen, A.J.; Patel, P.R.; Elward, A.; Robinson, L.; Gao, G.; Langer, R.; Perkins, K.M.; Jaeger, J.L.; et al. Outbreak of adverse reactions associated with contaminated heparin. N. Engl. J. Med. 2008, 359, 2674–2684, doi:10.1056/NEJMoa0806450. 19052120
[75]
Esko, J.D.; Stewart, T.E.; Taylor, W.H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA 1985, 82, 3197–3201, doi:10.1073/pnas.82.10.3197. 3858816
[76]
Ageenko, N.V.; Kiselev, K.V.; Odintsova, N.A. Expression of pigment cell-specific genes in the ontogenesis of the sea urchin Strongylocentrotus intermedius. Evid. Based Complement. Altern. Med. 2011, 2011.
[77]
Pomin, V.H.; Sharp, J.S.; Li, X.; Wang, L.; Prestegard, J.H. Characterization of glycosaminoglycans by 15NNMR spectroscopy and in vivo isotopic labeling. Anal. Chem. 2010, 82, 4078–4088, doi:10.1021/ac1001383. 20423049
[78]
Pomin, V.H.; Pereira, M.S.; Valente, A.-P.; Tollefsen, D.M.; Pav?o, M.S.; Mour?o, P.A. Selective cleavage and anticoagulant activity of a sulfated fucan: Stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology 2005, 15, 369–381. 15590773
[79]
Pomin, V.H.; Valente, A.-P.; Pereira, M.S.; Mour?o, P.A. Mild acid hydrolysis of sulfated fucans: A selective 2-desulfation reaction and an alternative approach for preparing tailored sulfated oligosaccharides. Glycobiology 2005, 15, 1376–1385, doi:10.1093/glycob/cwj030. 16118284
[80]
Varki, A.P.; Baum, L.G.; Bellis, S.L.; Cummings, R.D.; Esko, J.D.; Hart, G.W.; Linhardt, R.J.; Lowe, J.B.; McEver, R.P.; Srivastava, A.; et al. Working group report: The roles of glycans in hemostasis, inflammation and vascular biology. Glycobiology 2008, 18, 747–749, doi:10.1093/glycob/cwn065.