A combination of on-line HPLC-NMR and off-line chemical investigations has resulted in the identification of the previously reported polyhalogenated monoterpene plocamenone, together with the new structural analogue isoplocamenone from the crude extract of the marine alga Plocamium angustum. On-flow and stop-flow HPLC-NMR analyses (including the acquisition of WET 2D NMR spectra) rapidly assisted in the identification of the major component plocamenone and in the partial identification of its unstable double bond isomer isoplocamenone. Conventional off-line isolation and structural characterization techniques were employed to unequivocally confirm both structures, leading to a structural revision for plocamenone, as well as to obtain sufficient quantities for biological testing.
References
[1]
Dias, D.; Urban, S. Phytochemical analysis of the Southern Australian marine alga, Plocamium mertensii using HPLC-NMR. Phytochem. Anal. 2008, 19, 453–470, doi:10.1002/pca.1075.
[2]
Dias, D.A.; Urban, S. Application of HPLC-NMR for the rapid chemical profiling of a Southern Australian sponge, Dactylospongia sp. J. Sep. Sci. 2009, 32, 542–548, doi:10.1002/jssc.200800548.
[3]
Dias, D.A.; White, J.M.; Urban, S. Laurencia filiformis: Phytochemical profiling by conventional and HPLC-NMR approaches. Nat. Prod. Commun. 2009, 4, 157–172.
[4]
Timmers, M.; Urban, S. On-line (HPLC-NMR) and off-line phytochemical profiling of the australian plant, Lasiopetalum macrophyllum. Nat. Prod.Commun. 2011, 6, 1605–1616.
[5]
Brkljaca, R.; Urban, S. Recent advancements in HPLC-NMR and applications for natural product profiling and identification. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1063–1076, doi:10.1080/10826076.2011.587748.
[6]
Urban, S.; Separovic, F. Developments in hyphenated spectroscopic methods in natural product profiling. Front. Drug Des. Discov. 2005, 1, 113–166.
[7]
Mynderse, J.S.; Faulkner, D.J. Polyhalogenated monoterpenes from the red alga Plocamium cartilagineum. Tetrahedro. 1975, 31, 1963–1967, doi:10.1016/0040-4020(75)87060-8.
[8]
Dunlop, R.W.; Murphy, P.T.; Wells, R.J. A new polyhalogenated monoterpene from the red alga Plocamium angustum. Aust. J. Chem. 1979, 32, 2735–2739, doi:10.1071/CH9792735.
[9]
Brownlee, R.T.C.; Hall, J.G.; Reiss, J.A. An application of the INEPT pulse sequence to the NMR assignment of halogenated marine natural products. Org. Magn. Reson. 1983, 21, 544–547, doi:10.1002/omr.1270210905.
[10]
Konig, G.M.; Wright, A.D.; de Nys, R. Halogenated Monoterpenes from Plocamium costatum and Their Biological Activity. J. Nat. Prod. 1999, 62, 383–385, doi:10.1021/np980408y.
[11]
Konig, G.M.; Wright, A.D.; Sticher, O. A new polyhalogenated monoterpene from the red alga Plocamium cartilagineum. J. Nat. Prod. 1990, 53, 1615–1618, doi:10.1021/np50072a041.
[12]
Ankisetty, S.; Nandiraju, S.; Win, H.; Park, Y.C.; Amsler, C.D.; McClintock, J.B.; Baker, J.A.; Diyabalanage, T.K.; Pasaribu, A.; Singh, M.P.; et al. Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J. Nat. Prod. 2004, 67, 1295–1302, doi:10.1021/np049965c.
[13]
Konig, G.M.; Wright, A.D.; Linden, A. Plocamium hamatum and its monoterpenes: Chemical and biological investigations of the tropical marine red alga. Phytochemistry 1999, 52, 1047–1053, doi:10.1016/S0031-9422(99)00284-8.
Argandona, V.H.; Rovirosa, J.; San-Martin, A.; Riquelme, A.; Diaz-Marrero, A.R.; Cueto, M.; Darias, J.; Santana, O.; Guadano, A.; Gonzalez-Coloma, A. Antifeedant effects of marine halogenated monoterpenes. J. Agric. Food Chem. 2002, 50, 7029–7033, doi:10.1021/jf025857p.
[16]
Afolayan, A.F.; Mann, M.G.A.; Lategan, C.A.; Smith, P.J.; Bolton, J.J.; Beukes, D.R. Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistr. 2009, 70, 597–600, doi:10.1016/j.phytochem.2009.02.010.
[17]
Kim, J.-Y.; Yoon, M.-Y.; Cha, M.-R.; Hwang, J.-H.; Park, E.; Choi, S.-U.; Park, H.-R.; Hwang, Y.-I. Methanolic Extracts of Plocamium telfairiae Induce Cytotoxicity and Caspase-Dependent Apoptosis in HT-29 Human Colon Carcinoma Cells. J. Med. Foo. 2007, 10, 587–593, doi:10.1089/jmf.2007.002.
[18]
Crews, P.; Kho-Wiseman, E. Acyclic polyhalogenated monoterpenes from the red algae Plocamium violaceum. J. Org. Chem. 1977, 42, 2812–2815, doi:10.1021/jo00437a004.
Stierle, D.B.; Wing, R.M.; Sims, J.J. Marine natural products. XVI. Polyhalogenated acyclic monoterpenes from the red alga Plocamium of Antarctica. Tetrahedron 1979, 35, 2855–2859, doi:10.1016/S0040-4020(01)99499-2.
[21]
Leary, J.V.; Kfir, R.; Sims, J.J.; Fulbright, D.W. The mutagenicity of natural products from marine algae. Mutat. Res. 1979, 68, 301–305, doi:10.1016/0165-1218(79)90162-9.
[22]
Naylor, S.; Manes, L.V.; Crews, P. Carbon-13 substituent effects in multifunctional marine natural products. J. Nat. Prod. 1985, 48, 72–75, doi:10.1021/np50037a013.
[23]
Stierle, D.B.; Sims, J.J. Plocamenone, a unique halogenated monoterpene from the red alga, Plocamium. Tetrahedron Lett. 1984, 25, 153–156, doi:10.1016/S0040-4039(00)99827-7.
[24]
Kesternich, V.; Martinez, R.; Gutierrez, E.; Ballesteros, K.; Mansilla, H. Antibacterial activity of some compounds isolated from Ceramium rubrum against gram negative bacteria. Bol. Soc. Chil. Quim. 1997, 42, 105–108.
[25]
Gribble, G.W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update; Series Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products; Springer-Verlag/Wien: New York, NY, USA, 2010; Volume 91, pp. 9–348.
[26]
Jongaramruong, J.; Blackman, A.J. Polyhalogenated monoterpenes from a Tasmanian collection of the red seaweed Plocamium cartilagineum. J. Nat. Prod. 2000, 63, 272–275, doi:10.1021/np9903797.
Crews, P. Monoterpene halogenation by the red alga Plocamium oregonum. J. Org. Chem. 1977, 42, 2634–2636, doi:10.1021/jo00435a024.
[29]
Abreu, P.M.; Galindro, J.M. Polyhalogenated monoterpenes from Plocamium cartilagineum from the Portuguese coast. J. Nat. Prod. 1996, 59, 1159–1162, doi:10.1021/np960537j.
[30]
Crews, P.; Naylor, S.; Hanke, F.J.; Hogue, E.R.; Kho, E.; Braslau, R. Halogen regiochemistry and substituent stereochemistry determination in marine monoterpenes by carbon-13 NMR. J. Org. Chem. 1984, 49, 1371–1377, doi:10.1021/jo00182a011.
[31]
Hevesi, L.; Nagy, J.B.; Krief, A.; Derouane, E.G. Proton and carbon-13 studies of alkenes, epoxides, and cyclic thionocarbonates. Org. Magn. Reson. 1977, 10, 14–19, doi:10.1002/mrc.1270100105.
[32]
Chukovskaya, E.C.; Dostovalova, V.I.; Vasileva, T.T.; Freidlina, R.K. Carbon-13 NMR spectra of some polychloroalkenes. Org. Magn. Reson. 1976, 8, 229–232.
[33]
Kimpenhaus, W.; Auf der Heyde, W. Structure determination of highly chlorinated butenoic acids by carbon-13 NMR spectroscopy. Liebigs Ann. Chem. 1983, 378–392, doi:10.1002/jlac.198319830306.
[34]
Darias, J.; Rovirosa, J.; San, M.A.; Diaz, A.R.; Dorta, E.; Cueto, M. Furoplocamioids A-C, novel polyhalogenated furanoid monoterpenes from Plocamium cartilagineum. J. Nat. Prod. 2001, 64, 1383–1387, doi:10.1021/np010297u.
[35]
ACD/Labs, version 8.0; Advanced Chemistry Development, Inc.: Toronto, Canada, 2012. Available online: http://www.acdlabs.com (accessed on 4 May 2012).
[36]
ChemDraw Ultra, version 6.0; PerkinElmer Inc.: Cambridge, MA, USA, 2012. Available online: http://www.cambridgesoft.com (accessed on 4 May 2012).
[37]
Crews, P.; Kho-Wiseman, E. Cartilagineal. Unusual monoterpene aldehyde from marine alga. J. Org. Chem. 1974, 39, 3303–3304, doi:10.1021/jo00936a039.
[38]
Tobey, S.W. Structure assignments in polysubstituted ethylenes by nuclear magnetic resonance. J. Org. Chem. 1969, 34, 1281–1298, doi:10.1021/jo01257a019.
[39]
Pascual, C.; Meier, J.; Simon, W. Rule for the estimation of the chemical proton shift in double bonds. Helv. Chim. Act. 1966, 49, 164–168, doi:10.1002/hlca.660490122.
[40]
Crews, P.; Kho-Wiseman, E. Stereochemical assignments in marine natural products by carbon-13 NMR γ effects. Tetrahedron Lett. 1978, 19, 2483–2486, doi:10.1016/S0040-4039(01)94806-3.
[41]
Lopez, A.; Gerwick, W.H. Two new icosapentaenoic acids from the temperate red seaweed Ptilota filicina J. Agardh. Lipids 1987, 22, 190–194, doi:10.1007/BF02537301.
[42]
Itokawa, H.; Morris-Natschke, S.L.; Akiyama, T.; Lee, K.-H. Plant-derived natural product research aimed at new drug discovery. J. Nat. Med. 2008, 62, 263–280, doi:10.1007/s11418-008-0246-z.
[43]
Dias, D.; Urban, S. Chemical constituents of the lichen, Candelaria concolor: A complete NMR and chemical degradative investigation. Nat. Prod. Res. 2009, 23, 925–939, doi:10.1080/14786410802682536.