Lagunamides A ( 1) and B ( 2) are potent cytotoxic cyclic depsipeptides isolated from the filamentous marine cyanobacterium, Lyngbya majuscula, from Pulau Hantu, Singapore. These compounds are structurally related to the aurilide-class of molecules, which have been reported to possess exquisite antiproliferative activities against cancer cells. The present study presents preliminary findings on the selectivity of lagunamides against various cancer cell lines as well as their mechanism of action by studying their effects on programmed cell death or apoptosis. Lagunamide A exhibited a selective growth inhibitory activity against a panel of cancer cell lines, including P388, A549, PC3, HCT8, and SK-OV3 cells, with IC 50 values ranging from 1.6 nM to 6.4 nM. Morphological studies showed blebbing at the surface of cancer cells as well as cell shrinkage accompanied by loss of contact with the substratum and neighboring cells. Biochemical studies using HCT8 and MCF7 cancer cells suggested that the cytotoxic effect of 1 and 2 might act via induction of mitochondrial mediated apoptosis. Data presented in this study warrants further investigation on the mode of action and underscores the importance of the lagunamides as potential anticancer agents.
References
[1]
Tan, L.T. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 2007, 68, 954–979, doi:10.1016/j.phytochem.2007.01.012. 17336349
[2]
Cane, D.E.; Walsh, C.T.; Khosla, C. Harnessing the biosynthetic code: Combinations, permutations, and mutations. Science 1998, 282, 63–68, doi:10.1126/science.282.5386.63.
[3]
Tan, L.T. Filamentous tropical marine cyanobacteria: A rich source of natural products for anticancer drug discovery. J. Appl. Phycol. 2010, 22, 659–676, doi:10.1007/s10811-010-9506-x.
[4]
Minich, S.S. Brentuximab vedotin: A new age in the treatment of Hodgkin lymphoma and anaplastic large cell lymphoma. Ann. Pharmacother. 2012, 46, 377–383, doi:10.1345/aph.1Q680.
[5]
Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012, 19, 85–98, doi:10.1016/j.chembiol.2011.12.014.
[6]
Tan, L.T.; Chang, Y.Y.; Tripathi, A. Besarhanamides A and B from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 2008, 69, 2067–2069, doi:10.1016/j.phytochem.2008.04.021. 18514238
[7]
Tripathi, A.; Puddick, J.; Prinsep, M.R.; Lee, P.P.; Tan, L.T. Hantupeptin A, a cytotoxic cyclic depsipeptide from a Singapore collection of Lyngbya majuscula. J. Nat. Prod. 2009, 72, 29–32, doi:10.1021/np800448t. 19093843
[8]
Tripathi, A.; Puddick, J.; Prinsep, M.R.; Lee, P.P.; Tan, L.T. Hantupeptins B and C, cytotoxic cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 2010, 71, 307–311, doi:10.1016/j.phytochem.2009.10.006. 19913263
[9]
Tripathi, A.; Puddick, J.; Prinsep, M.R.; Rottmann, M.; Tan, L.T. Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2010, 73, 1810–1814, doi:10.1021/np100442x. 20936843
[10]
Taraphdar, A.K.; Roy, M.; Bhattacharya, R.K. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. Curr. Sci. 2001, 80, 1387–1396.
[11]
Wasilewski, M.; Scorrano, L. The changing shape of mitochondrial apoptosis. Trends Endocrinol. Metab. 2009, 20, 287–294, doi:10.1016/j.tem.2009.03.007.
[12]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70, doi:10.1016/S0092-8674(00)81683-9.
[13]
Nakao, Y.; Yoshida, W.Y.; Takada, Y.; Kimura, J.; Yang, L.; Mooberry, S.L.; Scheuer, P.J. Kulokekahilide-2, a cytotoxic depsipeptide from a cephalaspidean mollusk Philinopsis speciosa. J. Nat. Prod. 2004, 67, 1332–1340, doi:10.1021/np049949f.
[14]
Han, B.; Gross, H.; Goeger, D.E.; Mooberry, S.L.; Gerwick, W.H. Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2006, 69, 572–575, doi:10.1021/np0503911. 16643028
[15]
Takada, Y.; Umehara, M.; Nakao, Y.; Kimura, J. Revised absolute stereochemistry of natural kulokekahilide-2. Tetrahedron Lett. 2008, 49, 1163–1165, doi:10.1016/j.tetlet.2007.12.050.
[16]
Suenaga, K.; Mutou, T.; Shibata, T.; Itoh, T.; Kigoshi, H.; Yamada, K. Isolation and stereostructure of aurilide, a novel cyclodepsipeptide from the Japanese sea hare Dolabella auricularia. Tetrahedron Lett. 1996, 37, 6771–6774, doi:10.1016/S0040-4039(96)01464-5.
[17]
Suenaga, K.; Mutou, T.; Shibata, T.; Itoh, T.; Fujita, T.; Takada, N.; Hayamizu, K.; Takagi, M.; Irifune, T.; Kigoshi, H.; et al. Aurilide, a cytotoxic depsipeptide from the sea hare Dolabella auricularia: Isolation, structure determination, synthesis, and biological activity. Tetrahedron 2004, 60, 8509–8527, doi:10.1016/j.tet.2004.06.125.
[18]
Takashi, T.; Nagamiya, H.; Doi, T.; Griffiths, P.G.; Bray, A.M. Solid phase library synthesis of cyclic depsipeptides: aurilide and aurilide analogues. J. Comb. Chem. 2003, 5, 414–428, doi:10.1021/cc020091r.
[19]
Suenaga, K.; Kajiwara, S.; Kuribayashi, S.; Handa, T.; Kigoshi, H. Synthesis and cytotoxicity of aurilide analogs. Bioorg. Med. Chem. Lett. 2008, 18, 3902–3905, doi:10.1016/j.bmcl.2008.06.035. 18583129
[20]
Takada, Y.; Mori, E.; Umehara, M.; Nakao, Y.; Kimura, J. Reinvestigation of the stereochemistry of kulokekahilide-2. Tetrahedron Lett. 2007, 48, 7653–7656, doi:10.1016/j.tetlet.2007.08.093.
[21]
Takada, Y.; Umehara, M.; Katsumata, R.; Nakao, Y.; Kimura, J. The total synthesis and structure-activity relationships of a highly cytotoxic depsipeptide kulokekahilide-2 and its analogs. Tetrahedron 2012, 68, 659–669, doi:10.1016/j.tet.2011.10.094.
[22]
Finlay, C.A.; Hinds, P.W.; Levine, A.J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989, 57, 1083–1093, doi:10.1016/0092-8674(89)90045-7.
Fulda, S.; Debatin, K.-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006, 25, 4798–4811, doi:10.1038/sj.onc.1209608. 16892092
[25]
Spierings, D.; McStay, G.; Saleh, M.; Bender, C.; Chipuk, J.; Maurer, U.; Green, D.R. Connected to death: The (unexpurgated) mitochondrial pathway of apoptosis. Science 2005, 310, 66–67, doi:10.1126/science.1117105. 16210526
[26]
Chen, Q.Y.; Liu, Y.; Luesch, H. Systematic chemical mutagenesis identifies a potent novel apratoxin A/E hybrid with improved in vivo antitumor activity. ACS Med. Chem. Lett. 2011, 2, 861–865, doi:10.1021/ml200176m.
[27]
O’Donnell, D.R.; Milligan, L.; Stark, J.M. Induction of CD95 (Fas) and apoptosis in respiratory epithelial cell cultures following respiratory syncytial virus infection. Virology 1999, 257, 198–207, doi:10.1006/viro.1999.9650.
[28]
Wrasidlo, W.; Mielgo, A.; Torres, V.A.; Barbero, S.; Stoletov, K.; Suyama, T.L.; Klemke, R.L.; Gerwick, W.H.; Carson, D.A.; Stupack, D.G. The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc. Nat. Acad. Sci. 2007, 105, 2313–2318.
[29]
Sato, S.; Murata, A.; Orihara, T.; Shirakawa, T.; Suenaga, K.; Kigoshi, H.; Uesugi, M. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem. Biol. 2011, 18, 131–138, doi:10.1016/j.chembiol.2010.10.017. 21276946
[30]
Mishra, S.; Murphy, L.C.; Nyomba, B.L.; Murphy, L.J. Prohibitin: A potential target for new therapeutics. Trends Mol. Med. 2005, 11, 192–197, doi:10.1016/j.molmed.2005.02.004.
[31]
Ng, K.W.; Khoo, S.P.; Heng, B.C.; Setyawati, M.I.; Tan, E.C.; Zhao, X.; Xiong, S.; Fang, W.; Leong, D.T.; Loo, J.S. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 2011, 32, 8218–8225, doi:10.1016/j.biomaterials.2011.07.036. 21807406