The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described.
References
[1]
Mishra, B.B.; Tiwari, V.K. Natural Product in Drug Discovery: Clinical Evaluations and Investigations. In Opportunity, Challenge, and Scope of Natural Products in Medicinal Chemistry; Tiwari, V.K., Mishra, B.B., Eds.; Research Signpost: Kerala, India, 2011; pp. 1–61.
[2]
Mishra, B.B.; Tiwa, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807.
[3]
Carter, G.T. Natural products and Pharma 2011: Strategic changes spur new opportunities. Nat. Prod. Rep. 2011, 28, 1783–1789.
[4]
Newman, D.J.; Cragg, G.M. Natural products of therapeutic importance. Compr. Nat. Prod. II 2010, 2, 623–650.
[5]
Li, J.W.-H.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161–165, doi:10.1126/science.1168243.
[6]
Bhakuni, D.S.; Rawat, D.S. Bioactive Natural Products; Springer & Anamaya Publishers: New York, NY, USA, 2005.
[7]
Harvey, A.L. Natural products as a screening resource. Curr. Opin. Chem. Biol. 2007, 11, 480–484.
[8]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477.
[9]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234.
[10]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037.
[11]
Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science 2005, 310, 451–453.
[12]
Wang, B.; Deng, J.; Gao, Y.; Zhu, L.; He, R.; Xu, Y. The screening toolbox of bioactive substances from natural products: A review. Fitoterapia 2011, 82, 1141–1151.
[13]
Verpoorte, R. Exploration of nature’s chemodiversity: The role of secondary metabolites as leads in drug development. Drug Discov. Today 1988, 3, 232–238.
Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life. Nat. Prod. Rep. 2009, 26, 44–71.
[16]
Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887–2893, doi:10.1021/jm9602928.
[17]
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 2008, 12, 306–317.
[18]
Cragg, G.M.; Newman, D.J. Natural products sources of drugs: Plants, microbes, marine organisms, and animals. Compr. Med. Chem. II 2007, 1, 355–403.
[19]
Buss, A.D.; Butler, M.S. Natural Product Chemistry for Drug Discovery; RSC Publishing: Cambridge, UK, 2009.
[20]
Grothaus, G.P.; Cragg, G.M.; Newman, D.J. Plant natural products in anticancer drug discovery. Curr. Org. Chem. 2010, 14, 1781–1791.
[21]
Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J. 2006, 8, E239–E253.
[22]
Koehn, F.E.; Carter, G.T. The envolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220.
[23]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441.
[24]
Jones, W.P.; Chin, Y.-W.; Kinghorn, A.D. The role of pharmacognosy in modern medicine and pharmacy. Curr. Drug Targets 2006, 7, 247–264.
[25]
Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153.
[26]
Butler, M.S. Natural products to drugs: Natural products derived compounds in clinical trials. Nat. Prod. Rep. 2005, 22, 162–195.
[27]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75.
[28]
Kinghorn, A.D. The Discovery of Drugs from Higher Plants. In The Discovery of Natural Products with Therapeutic Potential; Gullo, V.P., Ed.; Butterworth-Heinemann: Boston, MA, USA, 1994; pp. 81–108.
[29]
Ravi?a, E. The Evolution of Drug Discovery. From Traditional Medicines to Modern Drugs; Wiley-WCH: Weinheim, Germany, 2010.
[30]
Bailly, C. Ready for comeback of natural products in oncololoy. Biochem. Pharmacol. 2009, 77, 1447–1457.
[31]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 2009, 109, 3012–3043.
[32]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 2007, 9, 767–776.
[33]
Lee, K.-H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod. 2010, 73, 500–516.
[34]
Cragg, G.M.; Newman, D.J. Industrial Applications Natural Products for Medicinal Purposes. Drugs from Nature: Present, Development and Future Prospects. In Natural Products in the New Millenium: Prospects and Industrial Applications; Rauter, A.P., Palma, F.B., Justino, J., Araújo, M.E., Dos Santos, S.P., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 441–461.
[35]
Newman, J.; Cragg, G. Natural products in medicinal chemistry. Bioorg. Med. Chem. 2009, 17, 2120.
[36]
Li, M.-Y.; Xiao, O.; Pan, J.-Y.; Wu, J. Natural products from semi-mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep. 2009, 26, 281–298.
[37]
Newman, D.J.; Cragg, G.M.; Kingston, D.G.I. Natural Products as Pharmaceuticals and Sources for Lead Structures. In The Practice of Medicinal Chemistry; Wermuth, C.G., Ed.; Academic Press: London, UK, 2003; pp. 159–186.
[38]
Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J. Med. Chem. 2008, 51, 2589–2599, doi:10.1021/jm0704090.
[39]
Galm, U.; Shen, B. Natural products drug discovery: The times have never been better. Chem. Biol. 2007, 14, 1098–1104.
[40]
Rishton, G.M. Natural products as a robust source of new drugs and drug leads: Past successes and present day issues. Am. J. Cardiol. 2008, 101, 43D–49D.
[41]
Lam, K.S. New aspects of natural products in drug discovery. Trends Microbiol. 2007, 15, 279–289.
[42]
Harvey, A.L. Natural product in drug discovery. Drug Discov. Today 2008, 13, 894–901.
[43]
Butler, M.S. Natural product to drug: Natural products derived compounds in clinical trials. Nat. Prod. Rep. 2008, 25, 475–516.
[44]
Langer, T.; Laggner, C.; Rollinger, J.M.; Stuppner, H. Pharmacophore-based screening for the successful identification of bio-active natural products. Chimia 2007, 61, 350–354.
[45]
Lang, G.; Mayhudin, N.A.; Mitova, M.I.; Sun, L.; van der Sar, S.; Blunt, J.W.; Cole, A.L.; Ellis, G.; Laatsch, H.; Munro, M.H. Evolving trends in the dereplication of natural product extracts: New methodology for rapid, small-scale investigation of natural product extracts. J. Nat. Prod. 2008, 71, 1595–1599.
[46]
Wilson, R.M.; Danishefsky, S.J. Small molecule natural products in the discovery of therapeutic agents: The synthesis connection. J. Org. Chem. 2006, 71, 8329–8351.
[47]
Wilson, R.M.; Danishefsky, S.J. Applications of total synthesis toward the discovery of clinically useful anticancer agents. Chem. Soc. Rev. 2007, 36, 1207–1226.
[48]
Lee, K.-H. Current developments in discovery and design of new drug candidates from plant natural. J. Nat. Prod. 2004, 67, 273–283.
[49]
Hu, G.-P.; Yuan, J.; Sun, L.; She, Z.-G.; Wu, J.-H.; Lan, X.-J.; Zhu, X.; Lin, Y.-C.; Chen, S.-P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 2011, 9, 514–525.
[50]
Faulkner, D.J. Marine natural products: Metabolites of marine algae and herbivorous marine molluscs. Nat. Prod. Rep. 1984, 1, 251–280.
Proksch, P.; Ebel, R.; Edrada, R.A.; Schupp, P.; Lin, W.H.; Sudarsono; Wray, V.; Steube, K. Detection of pharmacologically active natural products using ecology. Selected examples from Indopacific marine invertebrates and sponge-derived fungi. Pure Appl. Chem. 2003, 75, 343–432, doi:10.1351/pac200375020343.
[82]
Proksch, P.; Edrada, R.A.; Ebel, R. Drugs from the seas-urrent status and microbiological implications. Appl. Microbiol. Biotechnol. 2002, 59, 125–214.
[83]
Jha, R.K.; Xu, Z.R. Biomedical compounds from marine organisms. Mar. Drugs 2004, 2, 123–146.
[84]
Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 2004, 16, 245–322.
[85]
Tan, L.T. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 2007, 68, 954–999.
[86]
Gulder, T.A.M.; Moore, B.S. Chasing the treasures of the sea-bacterial marine natural products. Curr. Opin. Microbiol. 2009, 12, 252–320.
[87]
Sabdono, A.; Radjasa, O.K. Microbial symbionts in marine sponges: Marine natural product factory. J. Coast. Dev. 2008, 11, 57–66.
[88]
Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 2004, 21, 519–558.
Thornburg, C.; Zabriskie, T.M.; McPhail, K.L. Deep-sea hidrotermal: Potencial hot spot for natural products discovery. J. Nat. Prod. 2010, 73, 489–499.
[91]
Blunt, J.W.; Munro, M.H.G. Review of Dictionary of Marine Natural Products; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2008.
[92]
Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544.
[93]
El Sayed, K.A.; El Sayed, P.X.; Shen, X.; Perry, T.L.; Zjawiony, J.K.; Mark, T.C. Marine natural products as antituberculosis agents. Tetrahedron 2000, 56, 949–953.
[94]
Vo, T.-S.; Ngo, D.-H.; van Ta, Q.; Kim, S.-K. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur. J. Phar. Sci. 2011, 44, 11–20.
[95]
Abad, M.J.; Bermejo, P. Bioactive natural products from marine sources. Stud. Nat. Prod. Chem. 2001, 25, 683–755.
[96]
Garson, M.J. Marine natural products as antifeedants. Compr. Nat. Prod. II 2010, 4, 503–537.
Carter, B.K. Marine natural products as a source of novel pharmacological agents. Curr. Opin. Biotechnol. 1993, 4, 275–279.
[99]
Chapman, D.J. Natural products of marine algae: The interface of chemistry and biology. Mar. Chem. 1983, 12, doi:10.1016/0304-4203(83)90088-9.
[100]
Bull, A.T.; Stach, J.E.M. Marine actinobacteria: New opportunities for natural product search and discovery. Trends Microbiol. 2007, 15, 491–499.
[101]
Davidson, B.S. New dimensions in natural products research: Cultured marine microorganisms. Curr. Opin. Biotechnol. 1995, 6, 284–291.
[102]
Donia, M.; Hamann, M.T. Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 2003, 3, 338–348.
[103]
Glaser, K.B.; Mayer, A.M.S. A renaissance in marine pharmacology: From preclinical curiosity to clinical reality. Biochem. Pharmacol. 2009, 78, 440–448.
[104]
Mayer, A.M.S.; Rodríguez, A.D.; Berlinck, R.G.S.; Hamann, M.T. Marine pharmacology in 2005–6: Marine compounds with antihelmintic,antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta 2009, 1790, 283–308, doi:10.1016/j.bbagen.2009.03.011.
[105]
Kong, D.-X.; Jiang, Y.-Y.; Zhang, H.-Y. Marine natural products as sources of novel scaffolds: Achievement and concern. Drug Discov. Today 2010, 15, 884–886.
[106]
Albericio, F.; álvarez, M.; Cuevas, C.; Francesch, A.; Pla, D.; Tulla-Puche, J. The Sea as a Source of New Drugs. In Molecular Imaging for Integrated Medical Therapy and Drug Development. Part IV; Tanaki, N., Kuge, Y., Eds.; Springer: New York, NY, USA, 2010; pp. 237–249.
[107]
Hill, R.T.; Fenical, W. Pharmaceuticals from marine natural products: Surge or ebb? Curr. Opin. Biotechnol. 2010, 21, 777–779, doi:10.1016/j.copbio.2010.10.007.
[108]
Ausubel, J.H.; Crist, D.T.; Waggoner, P.E. Highlights of a Decade of Discovery. Census of Marine Life, 2010. Available online: http://www.coml.org/Highlights-2010 (accessed on 1 September 2011).
[109]
Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265.
[110]
Fusetani, N. Biotechnological potentials of marine natural products. J. Biotechnol. 2008, 136, 17–26.
[111]
Rana, M.; Hendrik, L. Marine natural products: A new wave of drugs? Future Med. Chem. 2011, 3, 1475–1489, doi:10.4155/fmc.11.118.
Lane, A.L.; Moore, B.S. A sea of biosynthesis: Marine natural products meet the molecular age. Nat. Prod. Rep. 2011, 28, 411–428, doi:10.1039/c0np90032j.
[114]
Proksch, P.; Putz, A.; Ortlepp, S.; Kjer, J.; Baye, M. Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 2010, 9, 475–489.
[115]
Yoshikazu, S. Natural products from marine derived microorganisms. J. Synt. Org. Chem. Jpn. 2010, 68, 534–542.
[116]
Chakraborty, C.; Hsu, C.-H.; Wen, Z.-H.; Lin, C.-S. Anticancer drugs discovery and development from marine organisms. Curr. Top. Med. Chem. 2010, 9, 1536–1545.
[117]
Jensen, P.R.; Fenical, W. Marine Microorganisms and Drug Discovery: Current Status and Future Potential. In Drugs from the Sea; Fusetani, N., Ed.; Karger: New York, NY, USA, 2000; pp. 6–29.
[118]
Schwartsmann, G.; Brondani, A.; Berlinck, R.G.S.; Jimeno, J. Marine organisms and other novel natural sources of new cancer drugs. Lancet Oncol. 2001, 2, 221–225.
Nuijen, B.; Bouma, M.; Manada, C.; Jimeno, J.M.; Schellens, J.M.M.; Bult, A.; Beijnen, J.H. Pharmaceutical development of anticancer agents derived from marine sources. Anticancer Drugs 2000, 11, 793–811.
[121]
Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 2011, 29, 468–482.
[122]
Hester, R.E.; Harrison, R.M.; Andersen, R.J.; Williams, D.E. Pharmaceuticals from the sea. Chem. Mar. Environ. 2000, 13, 55–80.
[123]
Galeano, E.; Rojas, J.J.; Martínez, A. Pharmacological developments obtained from marine natural products and current pipeline perspective. Nat. Prod. Commun. 2011, 6, 287–300.
[124]
Fattorusso, E.; Gerwick, W.H.; Taglialatela-Scafati, O. Handbook of Marine Natural Products; Springer: New York, NY, USA, 2012.
[125]
Besse, J.-P.; Latour, J.-F.; Garric, J. Anticancer drugs in surface waters: What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ. Int. 2012, 39, 73–86, doi:10.1016/j.envint.2011.10.002.
[126]
Radjasa, O.K.; Vaske, Y.M.; Navarro, G.; Vervoort, H.C.; Tenney, K.; Linington, R.G.; Crews, P. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorg. Med. Chem. 2011, 19, 6658–6674.
[127]
Miljanich, G.P. Ziconotide: Neural calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004, 11, 3029–3040.
[128]
Alicino, I.; Giglio, M.; Manca, F.; Bruno, F.; Puntillo, F. Intrathecal combination of ziconotide and morphine for refractory cancer pain: A rapidly acting and effective choice. Pain 2011, 152, 245–249.
[129]
Cuevas, C.; Francesch, A. Development of Yondelis? (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 2009, 26, 322–333, doi:10.1039/b808331m.
[130]
Sanfilippo, R.; Grosso, F.; Jones, R.L.; Banerjee, S.; Pilotti, S.; D’Incalci, M.; Dei Tos, A.P.; Raspagliesi, F.; Judson, I.; Casal, P.G. Trabectedin in advanced uterine leiomyosarcomas: A retrospective case series analysis from two reference centers. Gynecol. Oncol. 2011, 123, 553–556.
[131]
Monneret, C. Impact actuel des produits naturels sur la découverte de nouveaux médicaments anticancéreux. Ann. Pharm. Fr. 2010, 68, 218–232.
[132]
Burge, R.A. Advances in ovarian cancer disease control. Gynecol. Oncol. 2012, 124, 5–9.
[133]
Meoni, G.; Cecere, F.L.; Chaib, I.; Giommoni, E.; di Costanzo, F. Prolonged response to trabectedin in a heavily pretreated patient with metastatic endometrial carcinoma: A case report and literature review. Gynecol. Oncol. Case Rep. 2011, 1, 23–25.
[134]
Alday, P.H.; Correia, J.J. Macromolecular interaction of halichondrin B analogues eribulin (E7389) and E-076349 with tubulin by analitical ultacentrifugation. Biochemistry 2009, 48, 7927–7938.
[135]
Smith, J.A.; Wilson, L.; Azarenko, O.; Zhu, X.; Lewis, B.M.; Littlefield, B.A.; Jordan, M.A. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 2010, 49, 1331–1337.
Bozic, T.; Novakovic, I.; Gasic, M.J.; Juranic, Z.; Stanojkovic, T.; Tufegdzic, S.; Kljajic, Z.; Sladic, D. Synthesis and biological activity of derivatives of the marine quinone avarone. Eur. J. Med. Chem. 2010, 45, 923–929.
[145]
Benites, J.; Valderrama, J.A.; Rivera, F.; Rojo, L.; Campos, N.; Pedro, M.; Nascimento, M.S.J. Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. Bioorg. Med. Chem. 2008, 16, 862–868. and all previous parts.
[146]
Sladic, D.; Gasic, M.J. Reactivity and biological activity of marine sesquiterpene hydroquinones avarol and related compound from sponges of Order Dictyoceratida. Molecules 2006, 11, 1–33.
[147]
Motti, C.A.; Bourguet-Kondracki, M.-L.; Longeon, A.; Doyle, J.R.; Llewellyn, L.E.; Tapiolas, D.M.; Yin, P. Comparison of biological properties of several marine sponge-derived sesquiterpenoid quinOnes. Molecules 2007, 12, 1376–1388.
[148]
De Rosa, S. Marine Natural Products: Analysis, Structure Elucidation, Bio-Activity and Potential Use as Drug. In Natural Products in the New Millenium: Prospects and Industrial Applications; Rauter, A.P., Palma, F.B., Justino, J., Araújo, M.E., Dos Santos, S.P., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 441–461.
[149]
Gordaliza, M.; Miguel del Corral, J.M.; Mahiques, M.M.; San Feliciano, A.; García-Grávalos, M.D. Terpenequinone with antitumor activity. PCT Int. Appl. WO 9604230 A1, 15 February 1996.
[150]
Miguel del Corral, J.M.; Gordaliza, M.; Castro, M.A.; Mahiques, M.M.; Chamorro, P.; Molinari, A.; García-Grávalos, M.D.; Broughton, H.B.; San Feliciano, A. New selective cytotoxic diterpenylquinones and diterpeniylhydroquinones. J. Med. Chem. 2001, 44, 1257–1267.
[151]
Amigo, M.; Terencio, M.; Paya, M.; Iodice, C.; de Rosa, S. Synthesis and evaluation of diverse thio avarol derivatives as potential UVB photoprotective candidates. Bioorg. Med. Chem. Lett. 2007, 17, 2561–2565.
[152]
Schatton, W.; Schatton, M.; Pietschmamm, R. Method for the preparation of compositions with high avarol content from sponge and use for the prevention and treatment of psoriasis and tumors. Eur. Pat. Appl. EP 1391197 A1, 25 February 2004.
[153]
Quideau, S.; Lebon, M.; Lamidey, A.-M. Enantiospecific synthesis of the antituberculosis marine sponge metabolite (+)-puupehenone. The arenol oxidative activation route. Org. Lett. 2002, 4, 3975–3978, doi:10.1021/ol026855t.
[154]
Ciavatta, M.L.; Lopez-Gresa, M.P.; Gavagnin, M.; Melck, D.; Mauzo, E.; Guo, Y.-W.; van Soest, R.; Cimio, G. Studies on puupehenone-metabolites of Dysideas sp.: Structure and biological activity. Tetrahedron 2007, 63, 1380–1384.
[155]
Nakamura, H.; Kobayashi, J.; Kobayashi, M.; Ohizumi, Y.; Hirata, I. Xestoquinone. A novel cardiotonic marine natural product isolated from the okinawan sea sponge Xestospongia sapra. Chem. Lett. 1985, 6, 713–716.
[156]
Stahl, P.; Kissau, L.; Mazitschek, R.; Huwe, A.; Furet, P.; Giannis, A.; Waldmann, H. Total synthesis and biological evaluation of the nakijiquinones. J. Am. Chem. Soc. 2001, 123, 11586–11593.
[157]
Hu, J.-F.; Schetz, J.A.; Kelly, M.; Peng, J.-N.; Ang, K.K.H.; Flotow, H.; Leong, C.Y.; Ng, S.B.; Buss, A.D.; Wilkins, S.P.; et al. New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the jamaican sponge Smenospongia aurea. J. Nat. Prod. 2002, 65, 476–480.
[158]
Winder, P.L.; Baker, H.L.; Linley, P.; Guzmán, E.A.; Pomponi, S.A.; Diaz, M.C.; Reed, J.K.; Wright, A.E. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the deep-water sponge Neopetrosia cf. próxima. Bioorg. Med. Chem. 2011, 19, 6599–6603.
[159]
Schirmer, R.H.; Müller, J.G.; Krauth-Siegel, R.L. Disulfide-reductase inhibitors as chemotherapeutic agents: The design of drugs for trypanosomiasis and malaria. Angew. Chem. Int. Ed. Engl. 1995, 34, 141–154.
Alegría, A.; Sánchez, S.; Sánchez-Mu?oz, P.; Nieves, I.; Cruz, N.G.; Gordaliza, M.; Martín-Martín, M.L. Terpenylnaphthoquinones are reductively activated by NADH/NADH dehydrogenase. Toxicol. Environ. Chem. 2005, 87, 237–245.
[163]
Alegría, A.; Cordones, E.; Marcano, Y.; Sanchez, S.; Gordaliza, M.; Martín-Martín, M.L. Reductive activation of terpenylnaphtoquinones. Toxicology 2002, 175, 167–175.
[164]
Schr?der, H.C.; Wenger, R.; Gerner, H.; Reuter, P.; Kuchino, Y.; Müller, W.E.G. Suppression of the modulatory effects of the antileukemic and anti-human immunodeficiency virus compound avarol on gene expression by tryptophan. Cancer Res. 1989, 49, 2069–2076.
[165]
Sladi?, D.; Ga?i?, M.J. Effects of iron(II) compounds on the amount of DNA damage in friend erythroleukemia cells induced by avarol. Role of hydroxyl radicals. J. Serb. Chem. Soc. 1994, 59, 915–920.
[166]
Novakovi?, I.; Vuj?i?, Z.; Bo?i?, T.; Bo?i?, N.; Milosavi?, N.; Sladi?, D. Chemical modification of β-lactoglobulin by quinones. J. Serb. Chem. Soc. 2003, 68, 243–248.
[167]
Sladi?, D.; Novakovi?, I.; Vuj?i?, Z.; Bo?i?, T.; Bo?i?, N.; Mili?, D.; ?olaja, B.; Ga?i?, M.J. Protein covalent modification by biologically active quinones. J. Serb. Chem. Soc. 2004, 69, 901–907, doi:10.2298/JSC0411901S.
[168]
Sunazuka, T. Total synthesis of natural products for finding pharmaceutical leads. Shinki Sozai Tansaku 2008, 146–153.
[169]
Suyama, T.L.; Gerwick, W.H.; McPhail, K.L. Survey of marine marine product structure revisions: A synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 2011, 19, 6675–6701.
[170]
Baran, P.S.; Maimone, T.J.; Richter, J.M. Total synthesis of marine natural products without using protecting groups. Nature 2007, 446, 404–408.
[171]
Hanessian, S. Structure-based synthesis: From natural products to drug prototypes. Pure Appl. Chem. 2009, 81, 1085–1091.
[172]
Hashimoto, S. Natural product chemistry for drug discovery. J. Antibiot. 2011, 64, 697–701.
[173]
Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. 1999, 38, 643–647.
[174]
Feher, M.; Schmidt, J.M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227.
Capon, R.J. Marine natural products chemistry: Past, present, and future. Aust. J. Chem. 2010, 63, 851–854.
[183]
ApSimon, J.; Thomson, R.H. The Total Synthesis of Naturally Occurring Quinones in Total Synthesis of Natural Products; ApSimon, J., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007; Volume 8.
[184]
Fujimoto, H.; Nakamura, E.; Kim, Y.P.; Okuyama, E.; Ishibashi, M.; Sassa, T. Immunomodulatoy constituents from an ascomycete, Eupenicillium crustaceum, and revised bsolute structure of macrophorin D. J. Nat. Prod. 2001, 64, 1234–1237, doi:10.1021/np010152n.
[185]
Juhl, M.; Tanner, D. Recent applications of intramolecular Diels-Alder reaction to natural product synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992.
[186]
Swersey, J.C.; Barrows, L.R.; Ireland, C.M. Mamanuthaquinone: An antimicrobial and cytotoxic metabolite of Fasciospongia sp. Tetrahedron Lett. 1991, 32, 6687–6690.
[187]
Yoon, T.; Danishefsky, S.J.; de Gala, S. A concise total synthesis of (±)-mamanuthaquinone by using an exo-Diels-Alder reaction. Angew. Chem. Int. Ed. Engl. 1994, 33, 853–855.
[188]
Gordaliza, M.; Miguel del Corral, J.M.; Castro, M.A.; Mahiques, M.M.; García-Grávalos, M.D.; San Feliciano, A. Synthesis and bioactivity of new antineoplastic terpenylquinones. Bioorg. Med. Chem. Lett. 1996, 6, 1859–1864.
[189]
Hamann, M.T.; Scheuer, P.J.; Kelly-Borges, M. Biogenetically diverse, bioactive constituents of a sponge, order Verongida: Bromotyramines and sesquiterpene-shikimate derived metabolites. J. Org. Chem. 1993, 58, 6565–6569.
[190]
Kohmoto, S.; McConnell, O.J.; Wright, A.; Koehn, F.; Thompson, W.; Lui, M.; Snader, K.M. Puupehenone, a cytotoxic metabolite from a deep water marine sponge, Stronglyophora hartmani. J. Nat. Prod. 1987, 50, doi:10.1021/np50050a064.
[191]
Nasu, S.S.; Yeung, B.K.S.; Hamann, T.; Scheuer, P.J.; Kelly-Borges, M.; Goins, K. Puupehenone-related metabolites from two Hawaiian sponges, Hyrtios sp. J. Org. Chem. 1995, 60, 7290–7292.
[192]
Pina, I.; Sanders, M.L.; Crews, P. Puupehenones congeners from an Indo-pacific Hyrtios sponge. J. Nat. Prod. 2003, 66, 2–6.
[193]
Castro, M.E.; Gonzales-Iriarte, M.; Barrero, A.F.; Salvador-Tormo, N.; Mu?oz-Chapuli, R.; Medina, M.A.; Quesada, A.R. Study of puupehenone and related compounds as inhibitors of angiogenesis. Int. J. Cancer 2004, 110, 31–38.
[194]
Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.; Alvarez, E.; Haidour, A.; Ramos, J.M.; Alvarez-Manzaneda, R.; Hmamouchi, M.; Bouanou, H. Diels-Alder cycloaddition approach to puupehenone-related metabolites: Synthesis of the potent angiogenesis inhibitor 8-epipuupedione. J. Org. Chem. 2007, 72, 3332–3339.
[195]
Alvarez-Manzaneda, E.; Chahboun, R. Method for the preparation of mero sesquiterpenes from labdane diterpenes. WO 2009112622 A1, 17 September 2009.
[196]
Barrero, A.F.; Alvarez-Manzaneda, E.J.; Herrador, M.; Chahboun, R.; Galera, P. Synthesis and antitumoral activities of marine ent-chromazonarol and related compounds. Bioorg. Med. Chem. Lett. 1999, 9, 2325–2328.
[197]
Barrero, A.F.; Alvarez-Manzaneda, E.J.; Chahboun, R.; Cortes, M.; Armstrong, V. Synthesis and antitumoral activities of puupehedione and related compounds. Tetrahedron 1999, 55, 15181–15208.
[198]
Kamble, R.M.; Ramana, M.M.V. Microwave-assisted Diels-Alder reaction of 1,3,3-trimethyl-2-vinyl-1-cyclohexene with chromones-an expeditious approach to analogues of the puupehenone group of marine diterpenoids. Can. J. Chem. 2010, 88, 1233–1239.
[199]
Kurata, K.; Taniguchi, K.; Suzuki, M. Cyclozonarone, a sesquiterpene-substituted benzoquinone derivative from the brown alga Dictyopteris undulata. Phytochemistry 1996, 41, 749–752.
[200]
Schroder, J.; Matthes, B.; Seifert, K. Total synthesis of the marine sesquiterpene quinone (?)-cyclozonarone. Tetrahedron Lett. 2001, 42, 8151–8152.
[201]
Cuellar, M.A.; Salas, C.; Cortés, M.J.; Morillo, A.; Maya, J.D.; Preite, M.D. Synthesis and in vitro trypanocide activity of several polycyclic drimane-quinone derivatives. Bioorg. Med. Chem. 2003, 11, 2489–2497.
[202]
Roll, D.M.; Scheuer, P.J.; Matsutsumoto, G.K.; Clardy, J. Halenaquinone, a pentacyclic polihetide from a marine sponge. J. Am. Chem. Soc. 1983, 105, 6177–6178.
[203]
Kienzler, M.A.; Suseno, S.; Trauner, D. Vinyl Qui?ónez as Diles-Alder dienes: Concise sinthesis of (?)-halenaquinone. J. Am. Chem. Soc. 2008, 130, 8604–8605.
[204]
Sutherland, H.S.; Souza, F.E.S.; Rodrigo, R.G.A. A Short synthesis of (±)-halenaquinone. J. Org. Chem. 2001, 66, 3639–3641.
[205]
Schr?der, J.; Magg, C.; Seiferd, K. Total synthesis of the marine sesquiterpene hydroquinone zonarol and isozonarol and the sequiterpene uinine zonarone e isozonarone. Tetrahedron Lett. 2000, 41, 5469–5473.
[206]
Laube, T.; Schr?der, J.; Magg, C.; Strhle, R.; Seiferd, K. Total synthesis of yahazunol, zonarone and isozonarone. Tetrahedron 2002, 58, 4299–4309.
[207]
Fenical, W.; Sims, J.J.; Squatrito, D.; Wing, R.M.; Radlick, P. Marine natural products VII. Zonarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris zonarioides. J. Org. Chem. 1973, 38, 2383–2386.
[208]
Laube, T.; Bernet, A.; Dahne, H.; Jacobsen, I.D.; Seifert, K. Synthesis and pharmacological activities of some sequiterpene quinones and hydroquinones. Bioorg. Med. Chem. 2009, 17, 1422–1427.
[209]
Herlem, D.; Kerragoret, J.; Yu, D.; Khuong-Huu, F.; Kende, A.S. Studies toward the total synthesis of polyoxygenated labdanes: Preliminary approaches. Tetrahedron 1993, 49, 607–618.
[210]
Bernet, A.; Schroeder, J.; Seifert, K. Synthesis of the marine sesquiterpene quinones hyatellaquinone and spongiaquinone. Helv. Chim. Acta 2003, 86, 2009–2020.
[211]
Capon, R.J.; Groves, D.R.; Urban, S.; Watson, R.G. Spongiaquinone Revisited: Structural and Stereochemical studies on marine sesquiterpene/quinones from a Southern Australian marine sponge, Spongia sp. Aust. J. Chem. 1993, 46, 1245–1253.
[212]
Talpir, R.; Rudi, A.; Kashman, Y.; Loya, Y.; Hizi, A. Three new sesquiterpene hydroquinones from marine origin. Tetrahedron 1994, 50, 4179–4184.
[213]
Kazlauskas, R.; Murphy, P.T.; Warren, R.G.; Wells, R.J.; Blount, J.F. New quinones from a dictyoceratid sponge. Aust. J. Chem. 1978, 31, 2685–2697.
[214]
Sullivan, B.; Djura, P.; McIntyre, E.; Faulker, J. Antimicrobial constituents of the sponge Siphonodictyon coralliphagum. Tetrahedron 1981, 37, 979–982.
[215]
Sullivan, B.W.; Faulker, D.J.; Matsumoto, G.K.; Cun-Heng, H.; Cloardy, J. Metabolites of the burrowing sponge Siphonodictyon coralliphagu. J. Org. Chem. 1986, 51, 4568–4573.
[216]
Nakamura, M.; Suzuki, A.; Nakatani, M.; Fuchikami, T.; Inoue, M.; Katoh, T. A efficient synthesis of (+)-aureol via boron trifluoride etherate-promoted rearrangement of (+)-arenarol. Tetrahedron Lett. 2002, 43, 6929–6932.
[217]
Nakatami, N.; Nakamura, M.; Suzuki, A.; Fuchikami, T.; Inoue, M.; Katoh, T. Enantioselective total synthesis of (+)-aureol via a BF3·Et2O-promoted rearrangement/cyclization reaction of (+)-arenarol. Arkivoc 2003, 8, 45–57.
[218]
Djura, P.; Stierle, D.B.; Sulliva, B.; Faulkner, D.J.; Arnold, E.; Clardy, J. Some metabolites of the marine sponges Smenospongia aurea and Smenospongia (.ident.Polyfibrospongia) echina. J. Org. Chem. 1980, 45, 1435–1441.
[219]
Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of verongida sponges. 10. Secondary metabolite composition of the caribbean sponge Verongula gigantean. J. Nat. Prod. 2000, 63, 263–266, doi:10.1021/np990343e.
[220]
Wright, A.E.; Cross, S.S.; Burres, N.S.; Koehn, F. Antiviral and antitumor terpene hydroquinones from marine sponge and methods of use. USA. PCT WO 9112250 A1, 22 August 1991.
[221]
Katoh, T.; Nakatani, M.; Shikita, S.; Sampe, R.; Ishiwata, A.; Ohmori, O.; Nakamura, M.; Terashima, S. Studies toward the total synthesis of popolohuanone E: Enantioselective synthesis of 8-O-methylpopolohuanone E. Org. Lett. 2001, 3, 2701–2704.
[222]
Kawano, H.; Itoh, M.; Katoh, T.; Terashima, S. Studies toward the synthesis of popolohuanone E:Synthesis of natural (+)-arenarol related to the proposed biogenetic precursor of popolohuanone E. Tetrahedron Lett. 1997, 38, 7769–7772.
[223]
Banerjee, A.K.; Laya-Mimo, M. Synthesis of bioactive terpenes from Wieland-Miescher ketone and its methyl analog. Stud. Nat. Prod. Chem. 2000, 24, 175–213.
[224]
Kondracki, M.L.; Guyot, M. Biologically active quinine and hydroquinones sesquiterpenoids from the sponge Smenospongia sp. Tetrahedron 1989, 45, 1995–2004.
[225]
Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Wittig-type reaction of dimetallated carbodianion species as produced by zinc reduction of gem-polyhalogen compounds in the presence of Lewis acids. Bull. Chem. Soc. Jpn. 1980, 53, 1698–1702.
[226]
Moulines, J.; Lamidey, A.-M.; Desvergnes-Beuil, V. A practical synthesis of Ambrox? from sclareol using no metallic oxidant. Synth. Commun. 2001, 31, 749–758.
[227]
Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev. 2002, 102, 2523–2584.
[228]
Quideau, S.; Pouységu, L.; Oxoby, M.; Looney, M.A. 2-Alkoxyarenol-derived orthoquinols in carbon-oxygen, carbon-nitrogen and carbon-carbon bond-forming reactions. Tetrahedron 2001, 57, 319–329.
[229]
Synder, S.A.; Teitler, D.S.; Brucks, A.P. Simple reagents for direct halonium-induced polyene cyclizations. J. Am. Chem. Soc. 2010, 132, 14303–14314.
[230]
Loya, S.; Bakhanaskvili, M.; Kashman, Y.; Hizi, A. Peyssonols A and B, two novel inhibitors of the reverse transcriptases of human immunodeficiency virus types 1 and 2. Arch. Biochem. Biophys. 1995, 316, 789–796.
[231]
Ling, T.; Poupon, E.; Rueden, E.J.; Kim, S.H.; Theodorakis, E.A. Unified synthesis of quinone sesquiterpenes based on a radical decarboxylation and quinone addition reaction. J. Am. Chem. Soc. 2002, 124, 12261–12267.
[232]
Minale, L.; Riccio, R.; Sodano, G. Avarol, a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Dysidea avara. Tetrahedron Lett. 1974, 3401–3404.
[233]
De Rosa, S.; Minale, L.; Riccio, R.; Sodano, G. The absolute configuration of avarol, a rearranged sesquiterpenoid hydroquinone from a marine sponge. J. Chem. Soc. Perkin Trans. 1 1976, 13, 1408–1414.
[234]
Cozzolino, R.; de Giulio, A.; de Rosa, S.; Strazzullo, G.; Ga?i?, M.J.; Sladi?, D.; Zlatovi?, M. Biological activities of avarol derivatives, 1. Amino derivatives. J. Nat. Prod. 1990, 53, 699–702, doi:10.1021/np50069a027.
[235]
Müller, W.E.G.; Maidhof, A.; Zahn, R.K.; Schr?der, H.C.M.; Gasic, M.J.; Heidemann, D.; Bernd, A.; Kurelec, B.; Eich, E.; Seibert, G. Potent antileukemic activity of the novel cytostatic agent avarone and its analogues in vitro and in vivo. Cancer Res. 1985, 45, 4822–4826.
[236]
Müller, W.E.G.; Sobel, C.; Sachsse, W.; Diehl-Seifert, B.; Zahn, R.K.; Eich, E.; Kljaji?, Z.; Schr?der, H.C. Biphasic and differential effects of the cytostatic agents avarone and avarol on DNA metabolism of human and murine T and B lymphocytes. Eur. J. Cancer Clin. Onc. 1986, 22, 473–476.
[237]
Müller, W.E.G.; Sobel, C.; Diehl-Seifert, B.; Maidhof, A.; Sch?der, H.C. Influence of the antileukemic and anti-human immunodeficiency virus agent avarol on selected immune responses in vitro and in vivo. Biochem. Pharmacol. 1987, 36, 1489–1494.
[238]
Sarin, P.S.; Sun, D.; Thornton, A.; Müller, W.E.G. Inhibition of replication of the etiologic agent of acquired immune deficiency syndrome (human T-lymphotropic retrovirus/lymphadenopathy-associated virus) by avarol and avarone. J. Natl. Cancer Inst. 1987, 78, 663–666.
[239]
Hagiwara, H.; Uda, H. Optically pure (4aS)-(+)- or (4aR)-(?)-1,4a-dimethyl-4,4a,7,8-tetrahydronaphthalene-2,5(3H,6H)-dione and its use in the synthesis of an inhibitor of steroid biosynthesis. J. Org. Chem. 1988, 53, 2308–2311.
[240]
Dess, D.B.; Martin, J.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc. 1991, 113, 7277–7287.
[241]
Ling, T.; Poupon, E.; Rueden, E.J.; Theodorakis, E.A. Synthesis of (?)-Ilimaquinone via a radical decarboxylation and quinone addition reaction. Org. Lett. 2002, 4, 819–822.
[242]
Liu, H.; Wang, G.; Namikoshi, M.; Kobayashi, H.; Yao, X.; Cai, G. Sesquiterpene quinones from a marine sponge Hippospongia sp. that inhibit maturation of starfish oocytes and induce cell cycle arrest with HepG2 cells. Pharm. Biol. 2006, 44, 522–527, doi:10.1080/13880200600883056.
[243]
Kondracki, M.L.; Guyot, M. Smenospongine: A cytotoxic and antimicrobial aminoquinone isolated from Smenospongia sp. Tetrahedron Lett. 1987, 28, 5815–5818.
[244]
Marcos, I.S.; Conde, A.; Moro, R.F.; Basabe, P.; Díez, D.; Urones, J. Synthesis of quinone/hydroquinone sesquiterpenes. Tetrahedron 2010, 66, 8280–8290.
[245]
Laube, T.; Beil, W.; Seifert, K. Total synthesis of two 12-nordrimanes and the pharmacological active sesquiteerpene hydroquinone yahazunol. Tetrahedron 2005, 61, 1141–1148.
[246]
Furuichi, N.; Hata, T.; Soetjipto, H.; Kato, M.; Katsumura, S. Common synthetic strategy for optically active cyclic terpenoids having a 1,1,5-trimethyl-trans-decalin nucleus: Syntheses of (+)-acuminolide, (?)-spongianolide A, and (+)-scalarenedial. Tetrahedron 2001, 57, 8425–8442.
[247]
Sakurai, J.; Oguchi, T.; Watanabe, K.; Abe, H.; Kanno, S.; Ishikawa, M.; Katoh, T. Highly efficient total synthesis of the marine natural products (+)-avarone, (+)-avarol, (?)-neoavarone, (?)-neovarol and (+)-aureol. Chem. Eur. J. 2008, 14, 829–837.
[248]
Kelly, J.L.; Linn, J.A.; Selway, J.W.T. Synthesis and antirhinovirus activity of 6-(dimethylamino)-2-(trifluoromethyl)-9-(substituted benzyl)-9H-purines. J. Med. Chem. 1989, 32, 1757–1763.
[249]
Stork, G.; rosen, P.; Goldman, N.; Coombs, R.V.; Tsuji, J. Alkylation and carbonation of ketones by trapping the enolates from the reduction of α,β-unsaturated ketones. J. Am. Chem. Soc. 1965, 87, 275–286.
[250]
Bruner, S.D.; Radeke, H.S.; Tallarico, J.A.; Snapper, M.L. Total synthesis of (?)-ilimaquinone. J. Org. Chem. 1995, 60, 1114–1115.
[251]
Poigny, S.; Guyot, M.; Samadi, M. Efficient total synthesis of (?)-ilimaquinone. J. Org. Chem. 1998, 63, 5890–5894.
[252]
Stalh, P.; Waldmann, H. Asymmetric synthesis of the nakijiquinones-selective inhibitors of the her-2/Neu protooncogene. Angew. Chem. Int. Ed. 1999, 38, 3710–3713.
[253]
Shigemori, H.; Madono, T.I.; Sasaki, T.; Mikami, Y.; Kobayashi, J. Nakijiquinones A and B, new antifungal sesquiterpenoid quinones with an amino acid residue from an Okinawan marine sponge. Tetrahedron 1994, 50, 8347–8354.
[254]
Kobayashi, J.; Madono, T.; Shigemori, H. Nakijiquinones C and D, new sesquiterpenoid quinones with a hydroxy amino acid residue from a marine sponge inhibiting c-erbB-2 kinase. Tetrahedron 1995, 51, 10867–10874.
[255]
Takahashi, Y.; Kubota, T.; Kobayashi, J. Nakijiquinones E and F, new dimeric sesquiterpenoid quinones from marine sponge. Bioorg. Med. Chem. 2009, 17, 2185–2188.
[256]
Takahashi, Y.; Kubota, T.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J. Nakijiquinones G–I, new sesquiterpenoid quinones from marine sponge. Bioorg. Med. Chem. 2008, 16, 7561–7564.
[257]
Takahashi, Y.; Ushio, M.; Kubota, T.; Yamamoto, S.; Fromont, J.; Kobayashi, J. Nakijiquinones J–R, Sesquiterpenoid quinones with an qmine residue from Okinawan marine sponges. J. Nat. Prod. 2010, 73, 467–471.
[258]
Watson, A.T.; Park, K.; Wiener, D.F. Application of the nickel-mediated neopentyl coupling in the total synthesis of the marine natural product arenarol. J. Org. Chem. 1995, 60, 5102–5106.
[259]
Schmitz, F.J.; Lakshmi, V.; Powell, D.R.; van der Helm, D. Arenarol and arenarona: Sesquiterpenoids with rearranged drimane skeletons from marine sponge Dysidea arenaria. J. Org. Chem. 1984, 49, 241–244.
[260]
Utkina, N.K.; Denisenko, V.A.; Krasokhin, V.B. Sesquiterpenoidd aminoquinones from marine sponge Dysidea sp. J. Nat. Prod. 2010, 73, 788–791.
[261]
Valderrama, J.A.; Benites, J.; Cortés, M.; Pessoa-Mahana, H.; Prina, E.; Fournest, A. Studies on quinones. Part. 38: Synthesis and Leishmanicidal activity of sesquiterpene 1,4-quinones. Bioorg. Med. Chem. 2003, 11, 4713–4718, doi:10.1016/j.bmc.2003.08.011.
[262]
Valderrama, J.A.; Benites, J.; Cortés, M.; Pessoa-Mahana, H.; Prina, E.; Fournest, A. Studies on quinones. Part. 35: Studies on quinones. Part 35: Access to antiprotozoal active euryfurylquinones and hydroquinones. Tetrahedron 2002, 58, 881–886.
[263]
Mehta, G.; Likhite, N.S.; Kumar, C.S.A. A concise synthesis of the bioactive meroterpenoid natural product (±)-liphagal, a potent PI3K inhibitor. Tetrahedron Lett. 2009, 50, 5260–5262.
[264]
Marion, F.; Williams, D.E.; Patrick, D.O.; Hollander, I.; Mallon, R.; Kim, S.C.; Roll, D.M.; Feldberg, L.; Soest, R.V.; Andersen, R.J. Liphagal, a selective inhibitor of PI3 kinase α isolated from the sponge Aka coralliphaga: Structure elucidation and biomimetic synthesis. Org. Lett. 2006, 8, 321–324.
[265]
Sundstrom, T.J.; Anderson, A.C.; Wright, D.L. Inhibitors of phosphoinositide-3-kinase: A structure-based approach to understanding potency and selectivity. Org. Biomol. Chem. 2009, 7, 840–850.
[266]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 2005, 4, 988–1004.
[267]
Schr?der, H.C.; Brümmer, F.; Fattorusso, E.; Aiello, A.; Menna, M.; de Rosa, S.; Batel, R.; Müller, W.E. Sustainable production of bioactive compounds from sponges: Primmorphs as bioreactors. Prog. Mol. Subcell Biol. 2003, 37, 163–197.
[268]
Müller, W.E.; B?hm, M.; Batel, R.; de Rosa, S.; Tommonaro, G.; Müller, I.M.; Schr?der, H.C. Application of cell culture for the production of bioactive compounds from sponges: Synthesis of avarol by primmorphs from Dysidea avara. J. Nat. Prod. 2000, 63, 1077–1081.
[269]
De Caralt, S.; Sánchez-Fontenla, J.; Uriz, M.J.; Wijffels, R.H. In situ aquaculture methods for Dysidea avara (demospongiae, porifera) in the northwestern mediterranean. Mar. Drugs 2010, 8, 1731–1742.
[270]
Müller, W.E.; Grebenjuk, V.A.; Le Pennec, G.; Schr?der, H.; Brümmer, F.; Hentschel, U.; Müller, I.M.; Breter, H. Sustainable production of bioactive compounds by sponges—Cell culture and gene cluster approach: A review. Mar. Biotechnol. 2004, 6, 105–117.