全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境科学  2006 

Effects of Tillage-Cropping Systems on Methane and Nitrous Oxide Emissions from Permanently Flooded Rice Fields in a Central Sichuan Hilly Area of Southwest China
耕作制度对川中丘陵区冬灌田CH4和N2O排放的影响

Keywords: tillage-cropping systems,permanently flooded paddy fields,CH4 emission,N2O emission
耕作制度
,冬灌田,CH4,N2O,排放通量

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using the static opaque chamber method, a field experiment was conducted in situ for two years to study the effects of three cultivation systems on CH4 and N2O emissions from permanently flooded rice fields in a hilly area in Southwest China. The results show that the average CH4 fluxes from a permanently flooded rice field with a single middle rice crop and flooded with no winter crop (PF) were (21.44 +/- 1.77) mg x (m2 x h)(-1) and (3.77 +/- 0.99) mg x (m2 x h)(-1) during rice-growing and non-rice growing periods, respectively, where both values were much lower than many previous reports from similar regions in Southwest China. The annual CH4 emission was mainly occurred in the rice growing period, being only 23.2% of the total annual CH4 flux emitted from the non-rice growing period, though the latter occupied two thirds of a year. The annual average flux of nitrous oxide was (0.051 +/- 0.008) mg x (m2 x h)(-1) and the N2O emission also intensive in the rice growing period. However, being only 8.1% of total annual N2O flux emitted from the non-rice growing period. After implementing the rice-wheat rotation (RW) and rice oil-seed rape rotation (RR), the CH4 emissions were reduced substantially, only 43.8% and 40.6% of those of PF, respectively. However, the N2O emissions were increased after conducting RW and RR systems, which were 3.7 and 4.5 times larger than those of PF. The global warming potentials (GWPs) of the CH4 and N2O emissions under the three tillage-cropping systems were assessed in an integrated way. The results show that the integrated GWPs of the CH4 and N2O emissions are in the following sequence: PF>RR approximately equal to RR. Within 20, 100 and 500 years spans, the GWPs of the CH4 and N2O emissions of PF were 2.6, 2.1 and 1.7 times larger than those of RW (or RR), respectively. After introducing rice-wheat or rice oil-seed rape rotation systems into the permanently flooded rice fields, the integrated GWPs of the CH4 and N2O emissions were decreased largely.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133