全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2012 

Life Origination Hydrate Hypothesis (LOH-Hypothesis)

DOI: 10.3390/life2010135

Keywords: LOH-hypothesis, life origination hydrate hypothesis, living matter origination thermodynamic grounds, life origination chronology, nucleotide formation thermodynamics, life origination chemism and mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis), according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides), DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH 4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for?size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

References

[1]  Ostrovskii, V.E.; Kadyshevich, E.A. Generalized hypothesis of the origin of the living-matter simplest elements, transformation of the Archean atmosphere, and the formation of methane-hydrate deposits. Physics-Uspekhi (Advances in Physical Sciences)?2007, 50, 175–196.
[2]  Oparin, A.I. The Origin of Life; Moscow Worker Publisher: Moscow, Russia, 1924.
[3]  Oparin, A.I. The Origin of Life on Earth, 3rd ed. ed.; Academic Press Inc.: New York, NY, USA, 1957.
[4]  Miller, S.L. A production of amino-acids under possible primitive Earth conditions. Science?1953, 117, 528–529.
[5]  Miller, S.L.; Urey, H.C. Organic compound synthesis on the primitive Earth: Several questions about the origin of life have been answered, but much remains to be studied. Science?1959, 130, 245–251.
[6]  Blumenfeld, L.A. Problems of Biological Physics; Springer-Verlag: Berlin, Germany, 1981.
[7]  Blumenfeld, L.A. Information, thermodynamics, and the structural principles of biological system. Soros Educat. J.?1996, 7, 88–92.
[8]  Blumenfeld, L.A. Solvable and Unsolvable Problems of Biological Physics; Editorial URSS: Moscow, Russia, 2002. chapter 6.
[9]  Alberty, R.A. Thermodynamics of Biochemical Reactions; Wiley: Hoboken, NJ, USA, 2003.
[10]  Ould-Moulaye, C.B.; Dussap, C.G.; Gros, J.B. A consistent set of formation properties of nucleic acid compounds. Purines and pyrimidines in the solid state and in aqueous solution. Thermochim. Acta?2001, 375, 93–107, doi:10.1016/S0040-6031(01)00522-6.
[11]  Lide, D.R. Handbook of Chemistry and Physics, 76th ed. ed.; CRC Press: London, UK, 1996.
[12]  Boerio-Goates, J. Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA. Personal communication. 2005.
[13]  Shapiro, R. A replicator was not involved in the origin of life. IUBMB Life?2000, 49, 173–176.
[14]  Shapiro, R. Small molecule interactions were central to the origin of life. Q. Rev. Biol.?2006, 81, 105–125, doi:10.1086/506024.
[15]  Deamer, D. The first living systems: A bioenergetic perspective. Microbiol. Mol. Biol. Rev.?1997, 61, 239–261.
[16]  Segré, D.; Pilpel, Y.; Lancet, D. Mutual catalysis in sets of prebiotic organic molecules: Evolution through computer simulated chemical kinetics. Phys. A (Amsterdam)?1998, 249, 558–564.
[17]  Parmon, V.N. Abiogenic catalysts in nature. Colloids and Surfaces A: Physicochem. Eng. Aspects?1999, 151, 351–365, doi:10.1016/S0927-7757(98)00640-2.
[18]  Kadyshevich, E.A.; Ostrovskii, V.E. Oxygen isotopic anomalies in the rocks of celestial objects: Are they the key to the planet formation mechanism? EPSC Abstracts, 2010, 5. EPSC2010-3. Available online: http://meetings.copernicus.org/epsc2010/abstracts/EPSC2010-3.pdf (accessed on 1 January 2012).
[19]  Kadyshevich, E.A.; Ostrovskii, V.E. Development of the PFO–CFO hypothesis of Solar System formation: Why do the celestial objects have different isotopic ratios for some chemical elements? In Proc. Int. Astron. Union; Bonanno, A., de Gouveia dal Pino, E., Kosovichev, A., Eds.; Cambridge University Press: Cambridge, UK, 2010; Volume 6, pp. 95–101. no. S274 (Advances in Plasma Astrophysics).
[20]  Ostrovskii, V.E.; Kadyshevich, E.A. Physicochemical model of formation of the Solar System planets: The causes of differences in the chemical composition of planets. In Physchemistry-2010, Selected works; Smolyanskii, A.S., Ed.; LLC “Rosinatal”: Obninsk, Russia, 2010; pp. 46–61.
[21]  Ostrovskii, V.E.; Kadyshevich, E.A. Hypothesis of formation of planets from nebula: Why are the planets different in their chemical compositions? Orig. Life Evol. Biosph.?2009, 39, 217–219.
[22]  Ostrovskii, V.E.; Kadyshevich, E.A. Solar System formation hypothesis: Why the chemical compositions of the planets are so different? Geochim. Cosmochim. Acta?2009, 73, 979.
[23]  Kadyshevich, E.A. The PFO-CFO hypothesis of planet formation. Meteorit. Planet. Sci.?2009, 44, A105.
[24]  Kadyshevich, E.A. The planet formation hypothesis: Why are the solar system planets different in their chemical compositions?,4,EPSC. EPSC Abstracts, 2009, 4. EPSC2009-1. Available online: http://meetings.copernicus.org/epsc2009/abstracts/EPSC2009-1.pdf (accessed on 1 January 2012).
[25]  Ostrovskii, V.E.; Kadyshevich, E.A. Hypotheses of hydrocarbon-hydrate formation and living matter origination at the Earth. In Degassing of the Earth; Geodynamics, Geofluids, Oil, Gas, and their Paragenese; Dmitrievskiy, A.N., Valyaev, B.N., Eds.; GEOS: Moscow, Russia , 2008; pp. 374–377.
[26]  Ostrovskii, V.E. Hypothesis of the Natural Gas Abiotic Origin in the Context of Living Matter Origination. In Gas Chemistry at the Present Stage of Development; Vladimirov, A.I., Lapidus, A.L., Eds.; Gubkin Oil and Gas Russian State University: Moscow, Russia, 2010; pp. 35–69.
[27]  Kadyshevich, E.A.; Ostrovskii, V.E. Hydrate Hypothesis of Living Matter Origination: Logical and Thermodynamic Grounds. In Degassing of the Earth: Geotectonics Geodynamics, Geofluids; Oils and Gas; Hydrocarbons and Life; Dmitrievskiy, A.N., Valyaev, B.N., Eds.; GEOS: Moscow, Russia, 2010; pp. 195–198.
[28]  Ostrovskii, V.E.; Kadyshevich, E.A. Life Origination Hydrate Hypothesis (LOH-hypothesis): The Content and Chemical and Thermodynamic Grounds. In In Chemical Evolution & Origin of Life, Proceedings of the International Workshop; Jain Printing Press: Roorkee, India, 2010; pp. 1–2.
[29]  Ostrovskii, V.E.; Kadyshevich, E.A. Life origination hydrate hypothesis (LOH-hypothesis). Orig. Life Evol. Biosph.?2009, 39, 219–220.
[30]  Kadyshevich, E.A.; Ostrovskii, V.E. Life origination hydrate hypothesis (LOH-hypothesis): What questions can be hypothetically answered at present? EPSC Abstracts, 2010, 5. EPSC2010-5. Available online: http://meetings.copernicus.org/epsc2010/abstracts/EPSC2010-5.pdf (accessed on 1 January 2012).
[31]  Kadyshevich, E.A.; Ostrovskii, V.E. Hydrate hypothesis of living matter origination (LOH-hypothesis): Thermodynamic grounds of formation of living matter simplest elements from hydrocarbons and niter. J. Therm. Anal. Calorim.?2009, 95, 571–578, doi:10.1007/s10973-008-9546-5.
[32]  Ostrovskii, V.E.; Kadyshevich, E.A. Thermodynamics of formation of nitrogen bases and D-ribose from mineral substances in light of the problem of origination of simplest elements of living matter. Thermochim. Acta?2006, 441, 69–78, doi:10.1016/j.tca.2005.11.034.
[33]  Ostrovskii, V.E.; Kadyshevich, E.A. Hydrate model of the equilibrium DNA?H2O system. Int. J. Nanosci.?2002, 1, 101–121, doi:10.1142/S0219581X02000103.
[34]  Ostrovskii, V.E.; Kadyshevich, E.A. Use of data on the polyacrylamide–water system in analyzing the equilibrium DNA–water structure. Russ. J. Phys. Chem.?2000, 74, 1114–1124.
[35]  Ostrovskii, V.E.; Tsurkova, B.V.; Kadyshevich, E.A.; Gostev, B.V. Comparison study of the acrylamide?water and polyacrylamide?water systems: Differential heat effects, kinetics, and mechanisms of drying and vapor-phase wetting. J. Phys. Chem. B?2001, 105, 12680–12687, doi:10.1021/jp013508c.
[36]  Ostrovskii, V.E.; Tsurkova, B.V. The system polyacrylamide-water. Differential heat effects, rates and molecular mechanisms of wetting and drying. J. Thermal Anal.?1998, 51, 369–381.
[37]  Ostrovskii, V.E.; Tsurkova, B.V. The polyacrylamide–water system: Application of differential calorimetry to study the mechanisms of dissolution. Thermochim. Acta?1998, 316, 111–122, doi:10.1016/S0040-6031(98)00311-6.
[38]  Kadyshevich, E.A.; Ostrovskii, V.E. Hypothetical physicochemical mechanisms of some intracellular processes: The hydrate hypothesis of mitosis and DNA replication. Thermochim. Acta?2007, 458, 148–161, doi:10.1016/j.tca.2007.01.026.
[39]  Kadyshevich, E.A. Mitosis: Does it proceed according to an enclosed code or to deterministic physico-chemical regulations? In The XIVth Conference of the International Society for Biological Calorimetry, Abstracts; University of Gdansk: Gdynia, Poland, 2006; p. 49.
[40]  Ostrovskii, V.E.; Kadyshevich, E.A. Mitosis and DNA Replication and Life Origination Hydrate Hypotheses: Common Physical and Chemical Grounds. In DNA Replication—Current Advances; Seligmann, H., Ed.; InTech: Rijeka, Croatia, 2011; pp. 75–114.
[41]  Herdewijn, P.; Kisakürek, M.V. Origin of Life: Chemical Approach; VCHA: Zürich, Switzerland and Wiley-VCH: Germany, 2008.
[42]  Schopf, J.W. Life’s Origin. The Beginnings of Biological Evolution; University of California Press: Berkeley, CA, USA, 2002.
[43]  Miller, S.L.; Orgel, L.E. The Origin of Life on the Earth; Prentice-Hall: Englewood Cliffs, NJ, USA, 1974.
[44]  Schopf, J.W.; Walter, M.R. Archean microfossils: New evidence of ancient microbes. In Earth’s Earliest Biosphere: Its Origin and Evolution; Schopf, J.W., Ed.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 214–239.
[45]  Walter, M.R. Archean Stromatolites: Evidence of the Earth’s Earliest Benthos. In Earth’s Earliest Biosphere:Its Origin and Evolution; Schopf, J.W., Ed.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 187–213.
[46]  Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature?1992, 355, 125–132, doi:10.1038/355125a0.
[47]  Gold, T. The deep, hot biosphere. Proc. Nat. Acad. Sci. USA?1992, 89, 6045–6049, doi:10.1073/pnas.89.13.6045.
[48]  Holland, H.D. The Chemical Evolution of the Atmosphere and Oceans; Princeton University Press: Princeton, NJ, USA, 1984.
[49]  D’Hondt, S.; J?rgensen, B.B.; Miller, D.J.; D’Hondt, S.; J?rgensen, B.B.; Miller, D.J.; Batzke, A.; Blake, R.; Cragg, B.A.; Cypionka, H.; Dickens, G.R.; Ferdelman, T.; Hinrichs, K.-U.; et al. Distributions of microbial activities in deep subseafloor sediments. Science?2004, 306, 2216–2221.
[50]  Nagy, B.; Claus, G.; Hennessy, D.J. Organic particles embedded in minerals in Orgueil and Ivuna carbonaceous chondrites. Nature?1962, 193, 1129–1133.
[51]  Fitch, F.W.; Anders, E. Organized element: Possible identification in Orgueil meteorite. Science?1963, 140, 1097–1100.
[52]  Bernstein, M.P.; Sandford, S.A.; Allamandola, L.J. Life’s far-flung raw materials [interstellar organic molecules]. Sci. Am.?1999, 281, 42–49.
[53]  Rhawn, J. Astrobiology, the Origin of Life and the Death of Darwinism; University Press California: San Jose, CA, USA, 2001. ISBN 097 007 33 80.
[54]  Wainwright, M. A microbiologist looks at panspermia. Astrophys. SpaceSci.?2003, 285, 563–570, doi:10.1023/A:1025494005689.
[55]  Kruger, K.; Grabowski, P.J.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-splicing RNA: Autoexcision and autocyclizatio. Cell?1982, 31, 147–157, doi:10.1016/0092-8674(82)90414-7.
[56]  Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell?1983, 35, 849–857, doi:10.1016/0092-8674(83)90117-4.
[57]  Cech, T.R.; Bass, B. Biological catalysis by RNA. Annu. Rev. Biochem.?1986, 55, 599–629, doi:10.1146/annurev.bi.55.070186.003123.
[58]  Sharp, P.A. On the origin of RNA splicing and introns. Cell?1985, 42, 397–400, doi:10.1016/0092-8674(85)90092-3.
[59]  Westheimer, F.H. Polyribonucleic acids as enzymes. Nature?1986, 319, 534–536, doi:10.1038/319534a0.
[60]  Darnel, J.E.; Doolittle, W.F. Speculations on the early course of evolution. Proc. Nat. Acad. Sci. USA?1986, 83, 1271–1275.
[61]  Joyce, G.F. RNA evolution and the origins of life. Nature?1989, 338, 217–224, doi:10.1038/338217a0.
[62]  Orgel, L.E. Self-organizing biochemical cycles. Proc. Nat. Acad. Sci. USA?2000, 97, 12503–12507, doi:10.1073/pnas.220406697.
[63]  Orgel, L.E. Molecular replication. Nature?1992, 358, 203–209, doi:10.1038/358203a0.
[64]  Li, T.; Nicolaou, K.C. Chemical self-replication of palindromic duplex DNA. Nature?1994, 369, 218–221.
[65]  Orgel, L.E. The origin of life—a review of facts and speculations. Trends Biochem. Sci.?1998, 23, 491–495, doi:10.1016/S0968-0004(98)01300-0.
[66]  Fedonkin, M.A. Two Chronicles of Living Matter. In Problems of Geology and Mineralogy; Pystin, A.M., Ed.; Geoprint: Stony Brook, NY, USA, 2006; pp. 331–350.
[67]  Fedonkin, M.A. Eukaryotization of the early biosphere: A biogeochemical aspect. Geochem. Int.?2009, 47, 1265–1333, doi:10.1134/S0016702909130011.
[68]  Heges, S.B.; Kumar, S. Genomic clocks and evolutionary timescales. Trends Genet.?2003, 19, 200–206, doi:10.1016/S0168-9525(03)00053-2.
[69]  Mojzsis, S.J.; Arrhenius, G.; Mckeegan, K.D.; Harrison, T.M.; Nutman, A.P.; Friend, C.R.L. Evidence for life on Earth before 3,800 million years ago. Nature?1996, 384, 55–59.
[70]  Fedo, C.M.; Whitehouse, M.J. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science?2002, 296, 1448–1452.
[71]  van Zuilen, M.A.; Lepland, A.; Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature?2002, 418, 627–630.
[72]  Buss, L.W. The Evolution of Individuality; Princeton University Press: Princeton, NJ, USA, 1987.
[73]  Kadyshevich, E.A.; Ostrovskii, V.E.
[74]  Ostrovskii, V.E.; Kadyshevich, E.A.
[75]  Kadyshevich, E.A.
[76]  Ostrovskii, V.E.
[77]  Konovalov, M.I. Nitrating action of nitric acid on hydrocarbons of saturated character. J. of the Russian Physicochemical Society?1893, 25, 446–454.
[78]  Chaplin, M. Water Structure and Science. Available online: http://www.lsbu.ac.uk/water/clathrat2.html (accessed on 1 January 2012).
[79]  Barenbaum, A.A. On possible relationship between gas-hydrates and submarine groundwater. Water Resources?2007, 34, 587–592, doi:10.1134/S0097807807050132.
[80]  Ginsburg, G.D.; Soloviev, V.A. Submarine Gas Hydrates; Okeanologia: St. Petersburg, Russia, 1998.
[81]  Nekrasov, B.V. Foundations of General Chemistry; Khimiya: Moscow, Russia, 1965; Volume 1, pp. 432–440.
[82]  Abel, D.L.; Trevors, J.T. Self-organization vs. self-ordering events in life-origin models. Phys. Life Rev.?2006, 3, 211–228, doi:10.1016/j.plrev.2006.07.003.
[83]  Trevors, J.T.; Abel, D.L. Chance and necessity do not explain the origin of life. Cell Biol. Int.?2004, 28, 729–739, doi:10.1016/j.cellbi.2004.06.006.
[84]  Avetisov, V.A.; Goldanskii, V.I. Physical aspects of mirror symmetry breaking of the bioorganic world. Phys. Usp.?1996, 39, 819–836, doi:10.1070/PU1996v039n08ABEH000164.
[85]  Goldanskii, V.I.; Kuzmin, V.V. Spontaneous breaking of mirror symmetry in nature and the origin of life. Sov. Phys. Usp.?1989, 32, 1–45, doi:10.1070/PU1989v032n01ABEH002674.
[86]  Kauffman, S. The Origin of Order Self Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993.
[87]  Desai, P.; Wilhoit, R.C. Heats of combustion and enthalpies of formation of D-ribose, D-arabinose, and L-ascorbic acid. Thermochim. Acta?1970, 1, 61–64, doi:10.1016/0040-6031(70)85029-8.
[88]  Colbert, J.C.; Domalski, E.S.; Putnam, R.L. Enthalpies of combustion of D-ribose and 2-deoxy-D-ribose. J. Chem. Thermodyn.?1987, 19, 433–441, doi:10.1016/0021-9614(87)90128-5.
[89]  Hoogeker, J.T. Natural gas. 2010 Survey of Energy Resources Executive Summary; World Energy Council, 2010. 2010. Available online: http://www.dektmk.org.tr/upresimler/ser2010exsum.pdf (accessed on 1 January 2012).
[90]  Dillon, W. Gas (methane) hydrates -- a new frontier. Marine and Coastal Geology Program, U.S. Geological Survey. Available online: http://marine.usgs.gov/fact-sheets/gas-hydrates/title.html (accessed on 1 January 2012).
[91]  White, A.; Handler, P.; Smith, E.L.; Hill, R.L.; Lehman, I.R. Principles of Biochemistry, 6th ed. ed.; McGraw-Hill Inc.: New York, NY, USA, 1978.
[92]  Schwartz, J.H. Sudden Origins; John Wiley & Sons: New York, NY, USA, 1999; p. 89.
[93]  Denton, M. Evolution: A Theory in Crisis; Adler & Adler: Bethesda, MA, USA, 1986; p. 193.
[94]  Schippers, A.; Neretin, L.N.; Kallmeyer, J.; Ferdelman, T.G.; Cragg, B.A.; Parkes, R.J.; J?rdensen, B.B. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature?2005, 433, 861–864.
[95]  Oborin, A.A.; Khmurchik, V.T. Chemosynthesis at deep fluids as an additional source of organic matter in the lithosphere. In Degassing of the Earth; Dmitrievskiy, A.N., Valyaev, B.N., Eds.; GEOS: Moscow, Russia, 2008; pp. 366–367.
[96]  Davidson, D.W.; Garg, S.K.; Gough, S.R.; Handa, Y.P.; Ratcliffe, C.I.; Ripmeester, J.A.; Tse, J.S.; Lawson, W.F. Laboratory analysis of a naturally occurring gas hydrate from sediment of the Gulf of Mexico. Geochim. Cosmochim. Acta?1986, 50, 619–923, doi:10.1016/0016-7037(86)90110-9.
[97]  MacDonald, I.R.; Guinasso, N.L., Jr; Brooks, J.M.; Sassen, R.; Lee, L.L. Seafloor gas-hydrates: a video documenting oceanographic influences on their formation and dissociation. AAPG Bull?1995, 79, 910.
[98]  Menor-Salván, C.; Ruiz-Bermejo, M.; Osuna-Esteban, S.; Veintemillas-Verdaguer, S. Efficient synthesis of pyrimidines and triazines from urea and methane in ice matrix. Orig. Life Evol. Biosph.?2009, 39, 250–251.
[99]  Wang, L.; Chen, S.; Deng, Z. Phosphorothioation: An unusual post-replicative modification of the DNA backbone. In DNA Replication—Current Advances; Seligmann, H., Ed.; InTech: Rijeka, Croatia, 2011; pp. 57–74.
[100]  Wolfe-Simon, F.; Blum, J.S.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.W.; et al. A bacterium that can grow by using arsenic instead of phosphorus. Science?2011, 332, 1163–1166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133