全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Minimum Leakage Quasi-Static RAM Bitcell

DOI: 10.3390/jlpea1010204

Keywords: CMOS memory integrated circuits, SRAM, leakage suppression, ultra low power, dynamic noise margin

Full-Text   Cite this paper   Add to My Lib

Abstract:

As SRAMs continue to grow and comprise larger percentages of the area and power consumption in advanced systems, the need to minimize static currents becomes essential. This brief presents a novel 9T Quasi-Static RAM Bitcell that provides aggressive leakage reduction and high write margins. The quasi-static operation method of this cell, based on internal feedback and leakage ratios, minimizes static power while maintaining sufficient, albeit depleted, noise margins. This paper presents the concept of the novel cell, and discusses the stability of the cell under hold, read and write operations. The cell was implemented in a low-power 40?nm TSMC process, showing as much as a 12× reduction in leakage current at typical conditions, as compared to a standard 6T or 8T bitcell at the same supply voltage. The implemented cell showed full functionality under global and local process variations at nominal and low voltages, as low as 300?mV.

References

[1]  Kim, N.S.; Flautner, K.; Blaauw, D.; Mudge, T. Circuit and Microarchitectural Techniques for Reducing Cache Leakage Power. IEEE Trans. Very Large Scale Integr. Syst. 2004, 12, 167–184.
[2]  Calhoun, B.H.; Chandrakasan, A.P. A 256-Kb 65-nm Sub-Threshold SRAM Design for Ultra-Low-Voltage Operation. IEEE J. Solid State Circuits 2007, 42, 680–688.
[3]  Yang, B.D.; Kim, L.S. A Low-Power SRAM using Hierarchical Bit Line and Local Sense Amplifiers. IEEE J. Solid State Circuits 2005, 40, 1366–1376.
[4]  Wang, C.C.; Lee, C.L.; Lin, W.J. A 4-Kb Low-Power SRAM Design with Negative Word-Line Scheme. IEEE Trans. Circuits Syst. I: Regul. Papers 2007, 54, 1069–1076.
[5]  Razavipour, G.; Afzali-Kusha, A.; Pedram, M. Design and Analysis of Two Low-Power SRAM Cell Structures. IEEE Trans. Very Large Scale Integr. Syst. 2009, 17, 1551–1555.
[6]  Liu, Z.; Kursun, V. Characterization of a Novel Nine-Transistor SRAM Cell. IEEE Trans. Very Large Scale Integr. Syst. 2008, 16, 488–492.
[7]  Levacq, D.; Dessard, V.; Flandre, D. Low Leakage SOI CMOS Static Memory Cell with Ultra-Low Power Diode. IEEE J. Solid State Circuits 2007, 42, 689–702.
[8]  Chandrakasan, A.P.; Daly, D.C.; Finchelstein, D.F.; Kwong, J.; Ramadass, Y.K.; Sinangil, M.E.; Sze, V.; Verma, N. Technologies for Ultradynamic Voltage Scaling. Proc. IEEE 2010, 98, 191–214.
[9]  Verma, N.; Chandrakasan, A.P. A 256 Kb 65 Nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy. IEEE J. Solid State Circuits 2008, 43, 141–149.
[10]  Kim, T.H.; Liu, J.; Kim, C.H. An 8T Subthreshold SRAM Cell Utilizing Reverse Short Channel Effect for Write Margin and Read Performance Improvement. Proceedings of the IEEE Custom Integrated Circuits Conference (CICC '07), San Jose, CA, USA, 16–19 September 2007; pp. 241–244.
[11]  Chang, I.J.; Kim, J.J.; Park, S.P.; Roy, K. A 32 Kb 10T Sub-Threshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90 Nm CMOS. IEEE J. Solid State Circuits 2009, 44, 650–658.
[12]  Wang, A.; Calhoun, B.H.; Chandrakasan, A.P. Sub-Threshold Design for Ultra Low-Power Systems; Springer Verlag: Secaucus, NJ, USA, 2006.
[13]  Wang, J.; Nalam, S.; Calhoun, B.H. Analyzing Static and Dynamic Write Margin for Nanometer SRAMs. Proceeding of the 13th International Symposium on Low Power Electronics and Design, Bangalore, India, 11–13 August 2008; pp. 129–134.
[14]  Sharifkhani, M.; Sachdev, M. SRAM Cell Stability: A Dynamic Perspective. IEEE J. Solid State Circuits 2009, 44, 609–619.
[15]  Frustaci, F.; Corsonello, P.; Perri, S.; Cocorullo, G. Techniques for Leakage Energy Reduction in Deep Submicrometer Cache Memories. IEEE Trans. Very Large Scale Integr. Syst. 2006, 14, 1238–1249.
[16]  Seevinck, E.; List, F.J.; Lohstroh, J. Static-Noise Margin Analysis of MOS SRAM Cells. IEEE J. Solid State Circuits 1987, 22, 748–754.
[17]  Lohstroh, J. Static and Dynamic Noise Margins of Logic Circuits. IEEE J. Solid State Circuits 1979, 14, 591–598.
[18]  Ding, L.; Mazumder, P. Dynamic Noise Margin: Definitions and Model. Proceedings of the 17th International Conference on VLSI Design, Mumbai, India; 2004; pp. 1001–1006.
[19]  Huang, G.M.; Dong, W.; Ho, Y.; Li, P. Tracing SRAM Separatrix for Dynamic Noise Margin Analysis Under Device Mismatch. Proceedings of the Behavioral Modeling and Simulation Workshop (BMAS 2007), San Jose, CA, USA, 20–21 September 2007; pp. 6–10.
[20]  Zhang, Y.; Li, P.; Huang, G.M. Separatrices in High-Dimensional State Space: System-Theoretical Tangent Computation and Application to SRAM Dynamic Stability Analysis. Proceedings of the 47th ACM/IEEE Design Automation Conference (DAC), Anaheim, CA, USA; 2010; pp. 567–572.
[21]  Wieckowski, M.; Sylvester, D.; Blaauw, D.; Chandra, V.; Idgunji, S.; Pietrzyk, C.; Aitken, R. A Black Box Method for Stability Analysis of Arbitrary SRAM Cell Structures. Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 8–12 March 2010; pp. 795–800.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133