全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Insurance Coverage Policies for Personalized Medicine

DOI: 10.3390/jpm2040201

Keywords: personalized medicine, insurance, adoption

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adoption of personalized medicine in practice has been slow, in part due to the lack of evidence of clinical benefit provided by these technologies. Coverage by insurers is a critical step in achieving widespread adoption of personalized medicine. Insurers consider a variety of factors when formulating medical coverage policies for personalized medicine, including the overall strength of evidence for a test, availability of clinical guidelines and health technology assessments by independent organizations. In this study, we reviewed coverage policies of the largest U.S. insurers for genomic (disease-related) and pharmacogenetic (PGx) tests to determine the extent that these tests were covered and the evidence basis for the coverage decisions. We identified 41 coverage policies for 49 unique testing: 22 tests for disease diagnosis, prognosis and risk and 27 PGx tests. Fifty percent (or less) of the tests reviewed were covered by insurers. Lack of evidence of clinical utility appears to be a major factor in decisions of non-coverage. The inclusion of PGx information in drug package inserts appears to be a common theme of PGx tests that are covered. This analysis highlights the variability of coverage determinations and factors considered, suggesting that the adoption of personal medicine will affected by numerous factors, but will continue to be slowed due to lack of demonstrated clinical benefit.

References

[1]  Deverka, P.A. Pharmacogenomics, evidence, and the role of payers. Public Health Genomics 2009, 12, 149–157, doi:10.1159/000189627.
[2]  Deverka, P.A.; Schully, S.D.; Ishibe, N.; Carlson, J.J.; Freedman, A.; Goddard, K.A.; Khoury, M.J.; Ramsey, S.D. Stakeholder assessment of the evidence for cancer genomic tests: Insights from three case studies. Genet. Med. 2012, 14, 7.
[3]  Frueh, F.W. Real-world clinical effectiveness, regulatory transparency and payer coverage: Three ingredients for translating pharmacogenomics into clinical practice. Pharmacogenomics 2010, 11, 657–660, doi:10.2217/pgs.10.46.
[4]  Schulman, K.A.; Vidal, A.V.; Ackerly, D.C. Personalized medicine and disruptive innovation: Implications for technology assessment. Genet. Med. 2009, 11, 577–581, doi:10.1097/GIM.0b013e3181ae0935.
[5]  Scott, S.A. Personalizing medicine with clinical pharmacogenetics. Genet. Med. 2011, 13, 987–995, doi:10.1097/GIM.0b013e318238b38c.
[6]  Trosman, J.R.; van Bebber, S.L.; Phillips, K.A. Health technology assessment and private payers’ coverage of personalized medicine. J. Oncol. Pract. 2011, 7, S18–S24, doi:10.1200/JOP.2011.000300.
[7]  Meckley, L.M.; Neumann, P.J. Personalized medicine: Factors influencing reimbursement. Health Policy 2010, 94, 91–100, doi:10.1016/j.healthpol.2009.09.006.
[8]  Trosman, J.R.; van Bebber, S.L.; Phillips, K.A. Coverage policy development for personalized medicine: Private payer perspectives on developing policy for the 21-gene assay. J. Oncol. Pract. 2010, 6, 238–242, doi:10.1200/JOP.000075.
[9]  Cohen, J.; Wilson, A.; Manzolillo, K. Clinical and economic challenges facing pharmacogenomics. Pharmacogenomics J. 2012. [Epub ahead of print].
[10]  U.S. News. The Top 25 Health Insurance Companies. 2011. Available online: http://health.usnews.com/health-plans/national-insurance-companies/ (accessed on 7 August 2012).
[11]  Bernstein, D.; Williams, G.E.; Eisen, H.; Mital, S.; Wohlgemuth, J.G.; Klingler, T.M.; Fang, K.C.; Deng, M.C.; Kobashigawa, J. Gene expression profiling distinguishes a molecular signature for grade 1b mild acute cellular rejection in cardiac allograft recipients. J. Heart Lung Transplant. 2007, 26, 1270–1280, doi:10.1016/j.healun.2007.09.017.
[12]  Mehra, M.R.; Kobashigawa, J.A.; Deng, M.C.; Fang, K.C.; Klingler, T.M.; Lal, P.G.; Rosenberg, S.; Uber, P.A.; Starling, R.C.; Murali, S.; et al. Clinical implications and longitudinal alteration of peripheral blood transcriptional signals indicative of future cardiac allograft rejection. J. Heart Lung Transplant. 2008, 27, 297–301, doi:10.1016/j.healun.2007.11.578.
[13]  Yamani, M.H.; Taylor, D.O.; Haire, C.; Smedira, N.; Starling, R.C. Post-transplant ischemic injury is associated with up-regulated allomap gene expression. Clin. Transplant. 2007, 21, 523–525, doi:10.1111/j.1399-0012.2007.00681.x.
[14]  Yamani, M.H.; Taylor, D.O.; Rodriguez, E.R.; Cook, D.J.; Zhou, L.; Smedira, N.; Starling, R.C. Transplant vasculopathy is associated with increased allomap gene expression score. J. Heart Lung Transplant. 2007, 26, 403–406, doi:10.1016/j.healun.2006.12.011.
[15]  The National Academy of Clinical Biochemistry (NACB). Laboratory Analysis and Application of Pharmacogenetics to Clinical Practice. Available online: http://www.aacc.org/members/nacb/LMPG/OnlineGuide/PublishedGuidelines/LAACP/Documents/PGx_Guidelines.pdf (accessed on 16 August 2012).
[16]  Mega, J.L.; Hochholzer, W.; Frelinger, A.L.; Kluk, M.J.; Angiolillo, D.J.; Kereiakes, D.J.; Isserman, S.; Rogers, W.J.; Ruff, C.T.; Contant, C.; et al. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA 2011, 306, 2221–2228, doi:10.1001/jama.2011.1703.
[17]  Collet, J.P.; Hulot, J.S.; Pena, A.; Villard, E.; Esteve, J.B.; Silvain, J.; Payot, L.; Brugier, D.; Cayla, G.; Beygui, F.; et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: A cohort study. Lancet 2009, 373, 309–317.
[18]  Gladding, P.; Webster, M.; Zeng, I.; Farrell, H.; Stewart, J.; Ruygrok, P.; Ormiston, J.; El-Jack, S.; Armstrong, G.; Kay, P.; et al. The pharmacogenetics and pharmacodynamics of clopidogrel response: An analysis from the princ (plavix response in coronary intervention) trial. JACC Cardiovasc. Interv. 2008, 1, 620–627, doi:10.1016/j.jcin.2008.09.008.
[19]  Hulot, J.S.; Collet, J.P.; Silvain, J.; Pena, A.; Bellemain-Appaix, A.; Barthelemy, O.; Cayla, G.; Beygui, F.; Montalescot, G. Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: A systematic meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 134–143, doi:10.1016/j.jacc.2009.12.071.
[20]  Shuldiner, A.R.; O'Connell, J.R.; Bliden, K.P.; Gandhi, A.; Ryan, K.; Horenstein, R.B.; Damcott, C.M.; Pakyz, R.; Tantry, U.S.; Gibson, Q.; et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009, 302, 849–857, doi:10.1001/jama.2009.1232.
[21]  Sofi, F.; Giusti, B.; Marcucci, R.; Gori, A.M.; Abbate, R.; Gensini, G.F. Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: A meta-analysis. Pharmacogenomics J. 2011, 11, 199–206, doi:10.1038/tpj.2010.21.
[22]  Pare, G.; Mehta, S.R.; Yusuf, S.; Anand, S.S.; Connolly, S.J.; Hirsh, J.; Simonsen, K.; Bhatt, D.L.; Fox, K.A.; Eikelboom, J.W. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 2010, 363, 1704–1714, doi:10.1056/NEJMoa1008410.
[23]  Wallentin, L.; James, S.; Storey, R.F.; Armstrong, M.; Barratt, B.J.; Horrow, J.; Husted, S.; Katus, H.; Steg, P.G.; Shah, S.H.; et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: A genetic substudy of the plato trial. Lancet 2010, 376, 1320–1328, doi:10.1016/S0140-6736(10)61274-3.
[24]  Holmes, D.R., Jr.; Dehmer, G.J.; Kaul, S.; Leifer, D.; O'Gara, P.T.; Stein, C.M. ACCF/AHA clopidogrel clinical alert: Approaches to the FDA “boxed warning”: A report of the american college of cardiology foundation task force on clinical expert consensus documents and the american heart association endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. J. Am. Coll. Cardiol. 2010, 56, 321–341, doi:10.1016/j.jacc.2010.05.013.
[25]  Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 2009, 360, 790–800, doi:10.1056/NEJMra0801289.
[26]  Frueh, F.W.; Amur, S.; Mummaneni, P.; Epstein, R.S.; Aubert, R.E.; DeLuca, T.M.; Verbrugge, R.R.; Burckart, G.J.; Lesko, L.J. Pharmacogenomic biomarker information in drug labels approved by the united states food and drug administration: Prevalence of related drug use. Pharmacotherapy 2008, 28, 992–998, doi:10.1592/phco.28.8.992.
[27]  Zineh, I.; Gerhard, T.; Aquilante, C.L.; Beitelshees, A.L.; Beasley, B.N.; Hartzema, A.G. Availability of pharmacogenomics-based prescribing information in drug package inserts for currently approved drugs. Pharmacogenomics J. 2004, 4, 354–358, doi:10.1038/sj.tpj.6500284.
[28]  Haga, S.B.; Tindall, G.; O'Daniel, J.M. Public perspectives about pharmacogenetic testing and managing ancillary findings. Genet. Test. Mol. Biomark. 2012, 16, 193–197, doi:10.1089/gtmb.2011.0118.
[29]  Epstein, R.S.; Frueh, F.W.; Geren, D.; Hummer, D.; McKibbin, S.; O'Connor, S.; Randhawa, G.; Zelman, B. Payer perspectives on pharmacogenomics testing and drug development. Pharmacogenomics 2009, 10, 149–151, doi:10.2217/14622416.10.1.149.
[30]  National Bioeconomy Blueprint; The White House: Washington, D.C., USA, 2012.
[31]  UnitedHealth, Center for Health Reform and Modernization. Personalized medicine: Trends and Prospects for the New Science of Genetic Testing and Molecular Diagnostics. Available online: http://www.unitedhealthgroup.com/hrm/UNH_WorkingPaper7.pdf (accessed on 20 August 2012).
[32]  Khoury, M.J.; Berg, A.; Coates, R.; Evans, J.; Teutsch, S.M.; Bradley, L.A. The evidence dilemma in genomic medicine. Health Aff. (Millwood) 2008, 27, 1600–1611, doi:10.1377/hlthaff.27.6.1600.
[33]  Tunis, S.R.; Pearson, S.D. Coverage options for promising technologies: Medicare’s ‘coverage with evidence development’. Health Aff. (Millwood) 2006, 25, 1218–1230, doi:10.1377/hlthaff.25.5.1218.
[34]  Centers for Medicare & Medicaid Services. CMS Manual System: Pub 100-03 Medicare National Coverage Determinations. Available online: http://www.cms.gov/Regulations-and-Guidance/Guidance/Transmittals/downloads/R111NCD.pdf (accessed on 20 August 2012).
[35]  Ginsburg, G.S.; Voora, D. The long and winding road to warfarin pharmacogenetic testing. J. Am. Coll. Cardiol. 2010, 55, 2813–2815, doi:10.1016/j.jacc.2010.04.006.
[36]  Haga, S.B.; O'Daniel, J.M.; Tindall, G.M.; Lipkus, I.R.; Agans, R. Survey of us public attitudes toward pharmacogenetic testing. Pharmacogenomics J. 2012, 12, 197–204, doi:10.1038/tpj.2011.1.
[37]  Fargher, E.A.; Tricker, K.; Newman, W.; Elliott, R.; Roberts, S.A.; Shaffer, J.L.; Bruce, I.; Payne, K. Current use of pharmacogenetic testing: A national survey of thiopurine methyltransferase testing prior to azathioprine prescription. J. Clin. Pharm. Ther. 2007, 32, 187–195, doi:10.1111/j.1365-2710.2007.00805.x.
[38]  Faruki, H.; Heine, U.; Brown, T.; Koester, R.; Lai-Goldman, M. HLA-B*5701 clinical testing: Early experience in the united states. Pharmacogenet. Genomics 2007, 17, 857–860, doi:10.1097/FPC.0b013e328285da2e.
[39]  Faruki, H.; Lai-Goldman, M. Application of a pharmacogenetic test adoption model to six oncology biomarkers. Pers. Med. 2010, 7, 441–450, doi:10.2217/pme.10.37.
[40]  Higgs, J.; Gambhir, N.; Ramsden, S.C.; Poulton, K.; Newman, W.G. Pharmacogenetic testing in the United Kingdom genetics and immunogenetics laboratories. Genet. Test. Mol. Biomark. 2010, 14, 121–125, doi:10.1089/gtmb.2009.0156.
[41]  Hoop, J.G.; Lapid, M.I.; Paulson, R.M.; Roberts, L.W. Clinical and ethical considerations in pharmacogenetic testing: Views of physicians in 3 “early adopting” departments of psychiatry. J. Clin. Psychiatry 2010, 71, 745–753, doi:10.4088/JCP.08m04695whi.
[42]  Hopkins, M.M.; Ibarreta, D.; Gaisser, S.; Enzing, C.M.; Ryan, J.; Martin, P.A.; Lewis, G.; Detmar, S.; van den Akker-van Marle, M.E.; Hedgecoe, A.M.; et al. Putting pharmacogenetics into practice. Nat. Biotechnol. 2006, 24, 403–410.
[43]  Lash, T.L.; Rosenberg, C.L. Evidence and practice regarding the role for CYP2D6 inhibition in decisions about tamoxifen therapy. J. Clin. Oncol. 2010, 28, 1273–1275, doi:10.1200/JCO.2009.26.7906.
[44]  Chen, D.T.; Wynia, M.K.; Moloney, R.M.; Alexander, G.C. U.S. physician knowledge of the FDA-approved indications and evidence base for commonly prescribed drugs: Results of a national survey. Pharmacoepidemiol. Drug Saf. 2009, 18, 1094–1100, doi:10.1002/pds.1825.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133