全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2012 

Theory of the Origin, Evolution, and Nature of Life

DOI: 10.3390/life2010001

Keywords: quantum, gyre, emergence, thermodynamics, singularity, natural law, adaptation, learning and memory

Full-Text   Cite this paper   Add to My Lib

Abstract:

Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.

References

[1]  Schr?dinger, E. What is Life? The Physical Aspect of the Living Cell; With, Mind And Matter; & Autobiographical Sketches; Cambridge University Press: Cambridge; New York, NY, USA, 1992; p. 184.
[2]  Crick, F. Life Itself: Its Origin and Nature; Simon and Schuster: New York, NY, USA, 1981; p. 192.
[3]  Hoyle, F.; Wickramasinghe, N.C. Our Place in the Cosmos: The Unfinished Revolution; J.M. Dent: London, UK, 1993; p. 190.
[4]  Oparin, A.I.; Morgulis, S. The Origin of Life, 2nd ed. ed.; Dover Publications: Mineola, New York, NY, USA, 2003; p. 270.
[5]  Bernal, J.D. The Origin of Life; World Publishing Co.: Cleveland, OH, USA, 1967; p. 345.
[6]  Wachtershauser, G. On the chemistry and evolution of the pioneer organism. Chem. Biodivers.?2007, 4, 584–602, doi:10.1002/cbdv.200790052.
[7]  Gesteland, R.F.; Cech, T.; Atkins, J.F. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA, 2nd ed. ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1999; p. 709.
[8]  Gesteland, R.F.; Atkins, J.F. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1993; p. 630.
[9]  Gesteland, R.F.; Cech, T.; Atkins, J.F. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World, 3rd ed. ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2006; p. 768.
[10]  Agar, W.E. A Contribution to the Theory of the Living Organism; Melbourne University Press in Association with Oxford University Press: Victoria, Australia, 1943; p. 207.
[11]  Cannon, H.G. The Evolution of Living Things; Manchester University Press: Manchester, UK, 1959; p. 152.
[12]  De Duve, C. Blueprint for a Cell: The Nature and Origin of Life; N. Patterson: Burlington, NC, USA, 1991; p. 275.
[13]  Eigen, M.; Winkler, R. Steps Towards Life: A Perspective on Evolution; Oxford University Press: Oxford; New York, NY, USA, 1992; p. 173.
[14]  Elsasser, W.M. Reflections on a Theory of Organisms: Holism in Biology; Published for the Johns Hopkins Dept. of Earth and Planetary Sciences by the Johns Hopkins University Press: Baltimore, MD, USA, 1998; p. 160.
[15]  Fry, I. The Emergence of Life on Earth: A Historical and Scientific Overview; Rutgers University Press: New Brunswick, NJ, USA, 2000; p. 327.
[16]  Ho, M.-W. The Rainbow and the Worm: The Physics of Organisms; World Scientific: Singapore and River Edge, NJ, USA, 1993; p. 202.
[17]  Jacob, F. The Logic of Life: A History of Heredity; Princeton University Press: Princeton, NJ, USA, 1993; p. 348.
[18]  Küppers, B.-O. Information and the Origin of Life; MIT Press: Cambridge, MA, USA, 1990; p. 215.
[19]  Lahav, N. Biogenesis: Theories of Life’s Origin; Oxford University Press: New York, NY, USA, 1999; p. 349.
[20]  Lillie, R.S. General Biology and Philosophy of Organism; University of Chicago Press: Chicago, IL, USA, 1945; p. 215.
[21]  Maynard Smith, J.; Szathmáry, E. The Major Transitions in Evolution; W.H. Freeman Spektrum: Oxford, UK and New York, NY, USA, 1995; p. 346.
[22]  Weiss, P.A. The Science of Life: The Living System—A System for Living; Futura Publishing Co.: Mount Kisco, NY, USA, 1973; p. 137.
[23]  Zubay, G.L. Origins of Life on the Earth and in the Cosmos, 2nd ed. ed.; Academic Press: San Diego, CA, USA, 2000; p. 564.
[24]  Davies, P.C.W. The Fifth Miracle: The Search for the Origin and Meaning of Life; Simon & Schuster: New York, NY, USA, 1999; p. 304.
[25]  Hargittai, I.; Pickover, C.A. Spiral Symmetry; World Scientific: Singapore and Teaneck, NJ, USA, 1992; p. 449.
[26]  Ball, P. The Self-Made Tapestry: Pattern Formation in Nature; Oxford University Press: Oxford, UK and New York, NY, USA, 1999; p. 287.
[27]  Ginzburg, V.B.; Ginzburg, T.V. Prime Elements of Ordinary Matter, Dark Matter & Dark Energy: Beyond Standard Model & String Theory, 2nd ed. ed.; Universal Publishers: Boca Raton, FL, USA, 2007; p. 434.
[28]  Thompson, D.A.W. On Growth and Form; Dover: New York, NY, USA, 1992; p. 1116.
[29]  Bojowald, M. Singularities and quantum gravity. Cosmol. Gravit.?2007, 910, 294–333.
[30]  Chrusciel, P.T. Black holes. Conform. Struct. Space Time?2002, 604, 61–102, doi:10.1007/3-540-45818-2_3.
[31]  De Duve, C. Singularities: Landmarks on the Pathways of Life; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2005; p. 258.
[32]  Blackmond, D.G. The origin of biological homochirality. Cold Spring Harbor Perspect. Biol.?2010, 2, a002147, doi:10.1101/cshperspect.a002147.
[33]  Jantsch, E. The Self-Organizing Universe: Scientific and Human Implications of the Emerging Paradigm of Evolution, 1st ed. ed.; Pergamon Press: Oxford; New York, NY, USA, 1980; p. 343.
[34]  Babloyantz, A. Molecules, Dynamics, and Life: An Introduction to Self-Organization of Matter; Wiley: New York, NY, USA, 1986; p. 345.
[35]  Solé, R.V.; Bascompte, J. Self-Organization in Complex Ecosystems; Princeton University Press: Princeton, NJ, USA, 2006; p. 373.
[36]  Feltz, B.; Crommelinck, M.; Goujon, P. Self-Organization and Emergence in Life Sciences; Springer: Dordrecht, The Netherlands, 2006; p. 360.
[37]  McCabe, G. The non-unique universe. Found. Phys.?2010, 40, 629–637, doi:10.1007/s10701-010-9425-3.
[38]  G?del, K. On Formally Undecidable Propositions of Principia Mathematica and Related Systems; Dover: Mineola, NY, USA, 1962.
[39]  Hogan, D.A. Talking to themselves: Autoregulation and quorum sensing in fungi. Eukaryot. Cell?2006, 5, 613–619, doi:10.1128/EC.5.4.613-619.2006.
[40]  Tappy, L.; Chiolero, R.; Berger, M. Autoregulation of glucose production in health and disease. Curr. Opin. Clin. Metab. Care?1999, 2, 161–164, doi:10.1097/00075197-199903000-00012.
[41]  Bateman, E. Autoregulation of eukaryotic transcription factors. Progr. Nucleic Acid Res. Mol. Biol.?1998, 60, 133–168, doi:10.1016/S0079-6603(08)60892-2.
[42]  Hajdukovic, D.S. Dark energy, antimatter gravity and geometry of the Universe. Astrophys. Space Sci.?2010, 330, 1–5, doi:10.1007/s10509-010-0387-x.
[43]  Bacinich, E.J.; Kriz, T.A. The arrow of time in an expanding 3-sphere. Phys. Essays?1999, 12, 80–91, doi:10.4006/1.3025375.
[44]  Reid, R.G.B. Biological Emergences: Evolution by Natural Experiment; MIT Press: Cambridge, MA, USA, 2007; p. 517.
[45]  Bak, P.; Paczuski, M. Complexity, contingency, and criticality. Proc. Natl. Acad. Sci. USA?1995, 92, 6689–6696, doi:10.1073/pnas.92.15.6689.
[46]  Von Bertalanffy, L. General System Theory; Foundations, Development, Applications; G. Braziller: New York, NY, USA, 1969; p. 289.
[47]  Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: New York, NY, USA, 1993; p. 709.
[48]  Bird, R.J. Chaos and Life: Complexity and Order in Evolution and Thought; Columbia University Press: New York, NY, USA, 2003; p. 322.
[49]  Yockey, H.P. Information Theory, Evolution, and the Origin of Life; Cambridge University Press: New York, NY, USA, 2005; p. 259.
[50]  Laszlo, E. The Systems View of the World: A Holistic Vision for Our Time; Hampton Press: Cresskill, NJ, USA, 1996; p. 103.
[51]  Lorenz, E.N. The Essence of Chaos; University of Washington Press: Seattle, DC, USA, 1993; p. 227.
[52]  Standish, R.K. Why Occam’s razor. Found. Phys. Lett.?2004, 17, 255–266, doi:10.1023/B:FOPL.0000032475.18334.0e.
[53]  Anderson, P.W. More is different. Science?1997, 177, 393–396.
[54]  Umpleby, S.A. Physical relationships among matter, energy and information (Reprinted form Cybernetics and Systems ‘04, 2004). Syst. Res. Behav. Sci.?2007, 24, 369–372, doi:10.1002/sres.761.
[55]  Smil, V. Energies: An Illustrated Guide to the Biosphere and Civilization; MIT Press: Cambridge, MA, USA, 1999; p. 210.
[56]  Wrigglesworth, J.M. Energy and Life; Taylor & Francis: London, UK and Bristol, PA, USA, 1997.
[57]  Lehninger, A.L. Bioenergetics; the Molecular Basis of Biological Energy Transformations, 2nd ed. ed.; W.A. Benjamin: Menlo Park, CA, USA, 1971; p. 245.
[58]  Von Foerster, H. Understanding Understanding: Essays on Cybernetics and Cognition; Springer: New York, NY, USA, 2003; p. 362.
[59]  Dakos, V.; Kefi, S.; Rietkerk, M.; van Nes, E.H.; Scheffer, M. Slowing down in spatially patterned ecosystems at the brink of collapse. Am. Nat.?2011, 177, E153–E166, doi:10.1086/659945.
[60]  Devreotes, P. Dictyostelium discoideum: A model system for cell-cell interactions in development. Science?1989, 245, 1054–1058.
[61]  Kuznetsov, E.A. Wave collapse in plasmas and fluids. Chaos?1996, 6, 381–390, doi:10.1063/1.166182.
[62]  Anraku, Y. Bacterial electron transport chains. Annu. Rev. Biochem.?1988, 57, 101–132, doi:10.1146/annurev.bi.57.070188.000533.
[63]  Kovacic, P.; Pozos, R.S. Bioelectronome. Integrated approach to receptor chemistry, radicals, electrochemistry, cell signaling, and physiological effects based on electron transfer. J. Recept. Signal Transduct. Res.?2007, 27, 261–294, doi:10.1080/10799890701509133.
[64]  Trevors, J.T.; Masson, L. Quantum Microbiology. Curr. Issues Mol. Biol.?2011, 13, 43–49.
[65]  Smolin, L. A crisis in fundamental physics. Update, N. Y. Acad. Sci. Mag.?2006, 10–14.
[66]  Nagel, S. Physics in crisis. Phys. Today?2002, 55, 55–57, doi:10.1063/1.1522217.
[67]  Heller, M.; Pysiak, L.; Sasin, W. Fundamental Problems in the unification of physics. Found. Phys.?2011, 41, 905–918, doi:10.1007/s10701-011-9535-6.
[68]  Nikolic, H. Quantum mechanics: Myths and facts. Found. Phys.?2007, 37, 1563–1611, doi:10.1007/s10701-007-9176-y.
[69]  Turyshev, S.G. Experimental Tests of General Relativity. Annu. Rev. Nuclear Part. Sci.?2008, 58, 207–248, doi:10.1146/annurev.nucl.58.020807.111839.
[70]  Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe, 1st Vintage Books ed. ed.; Vintage Books: New York, NY, USA, 2007; p. 1099.
[71]  Lyons, L. An introduction to the possible substructure of quarks and leptons. Progr. Part. Nuclear Phys.?1983, 10, 227–304, doi:10.1016/0146-6410(83)90005-4.
[72]  Hegstrom, R.A. Electron Chirality. Theochem J. Mol. Struct.?1991, 78, 17–21, doi:10.1016/0166-1280(91)85241-X.
[73]  Hegstrom, R.A. Weak neutral current and beta-radiolysis effects on the origin of biomolecular chirality. Nature?1985, 315, 749–750, doi:10.1038/315749a0.
[74]  Bryman, D. Three generations of quarks and leptons: Who ordered that? Intersect. Part. Nuclear Phys.?2000, 549, 150–163.
[75]  Arunan, E.; Raghavendra, B. Unpaired and sigma bond electrons as H, Cl, and Li bond acceptors: An anomalous one-electron blue-shifting chlorine bond. J. Phys. Chem. A?2007, 111, 9699–9706, doi:10.1021/jp073667h.
[76]  Haviland, D.B.; Delsing, P. Cooper-pair charge solitons: The electrodynamics of localized charge in a superconductor. Phys. Rev. B?1996, 54, R6857–R6860, doi:10.1103/PhysRevB.54.R6857.
[77]  Reiher, M.; Eickerling, G. The shell structure of atoms. J. Chem. Theory Comput.?2008, 4, 286–296, doi:10.1021/ct7002447.
[78]  Williams, R.J.P. The fundamental nature of life as a chemical system: The part played by inorganic elements. J. Inorg. Biochem.?2002, 88, 241–250, doi:10.1016/S0162-0134(01)00350-6.
[79]  Williams, R.J.P.; da Silva, J.J.R.F. Evolution was chemically constrained. J. Theor. Biol.?2003, 220, 323–343, doi:10.1006/jtbi.2003.3152.
[80]  Truscott, A.G.; Strecker, K.E.; McAlexander, W.I.; Partridge, G.B.; Hulet, R.G. Observation of Fermi pressure in a gas of trapped atoms. Science?2001, 291, 2570–2572.
[81]  Gensemer, S.D.; Jin, D.S. Transition from collisionless to hydrodynamic behavior in an ultracold Fermi gas. Phys. Rev. Lett.?2001, 87, doi:10.1103/PhysRevLett.87.173201.
[82]  Anderson, P.W.; Casey, P.A. Hidden Fermi liquid; the moral: A good effective low-energy theory is worth all of Monte Carlo with Las Vegas thrown in. J. Phys. Condens. Matter?2010, 22, doi:10.1088/0953-8984/22/16/164201.
[83]  Mook, H.A.; Dai, P.; Dogan, F.; Hunt, R.D. One-dimensional nature of the magnetic fluctuations in YBa2Cu3O6.6. Nature?2000, 404, 729–731.
[84]  Sharma, R.P.; Ogale, S.B.; Zhang, Z.H.; Liu, J.R.; Chu, W.K.; Veal, B.; Paulikas, A.; Zheng, H.; Venkatesan, T. Phase transitions in the incoherent lattice fluctuations in YBa2Cu3O(7-delta). Nature?2000, 404, 736–740.
[85]  Zwierlein, M.W.; Abo-Shaeer, J.R.; Schirotzek, A.; Schunck, C.H.; Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature?2005, 435, 1047–1051.
[86]  Galitski, V.M.; Refael, G.; Fisher, M.P.; Senthil, T. Vortices and quasiparticles near the superconductor-insulator transition in thin films. Phys. Rev. Lett.?2005, 95, doi:10.1103/PhysRevLett.95.077002.
[87]  Kopnin, N.B. Vortex dynamics and mutual friction in superconductors and Fermi superfluids. Rep. Prog. Phys.?2002, 65, 1633–1678, doi:10.1088/0034-4885/65/11/202.
[88]  Carati, A.; Galgani, L.; Giorgilli, A. The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics. Chaos?2005, 15, doi:10.1063/1.1861264.
[89]  Moreover, given that the electrogyre is a cyclical, periodic system in which all particles within the gyre continually adapt to one another through photon mobilization and storage, this provides a novel solution to the Fermi-Pasta-Ulam problem.
[90]  Kalmus, P.I.P. The forces of nature. Interdiscip. Sci. Rev.?1993, 18, 343–349, doi:10.1179/030801893789766708.
[91]  The frequently presented 2D lengthening wavelengths of the electromagnetic spectrum from gamma rays to radio rays are modeled as the 4D expansion or widening of the electrogyre from the photonic singularity.
[92]  Uman, M.A.; Krider, E.P. A review of natural lightning—Experimental-data and modeling. IEEE Trans. Electromagn. Compat.?1982, 24, 79–112, doi:10.1109/TEMC.1982.304006.
[93]  Rowland, H.L. Theories and simulations of elves, sprites and blue jets. J. Atmos. Solar Terr. Phys.?1998, 60, 831–844, doi:10.1016/S1364-6826(98)00034-0.
[94]  The electromagnetic spectral signature of the photonic threshold effect is observed in the colored pre-lightning emissions called red sprites and blue jets.
[95]  Stenhoff, M. Ball Lightning: An Unsolved Problem in Atmospheric Physics; Kluwer Academic: New York, NY, USA, 1999; p. 349.
[96]  Abrahamson, J.; Dinniss, J. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature?2000, 403, 519–521, doi:10.1038/35000525.
[97]  Bohr, N. On the notions of causality and complementarity. Science?1950, 111, 51–54.
[98]  Pearle, P.; Collett, B. Wavefunction collapse and random walk. Found. Phys.?2003, 33, 1495–1541, doi:10.1023/A:1026048530567.
[99]  Karakostas, V.; Dickson, M. Decoherence in unorthodox formulations of quantum-mechanics. Synthese?1995, 102, 61–97, doi:10.1007/BF01063900.
[100]  Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Phys. Rep. Rev. Sect. Phys. Lett.?2007, 452, 155–176.
[101]  Marco, R.; Diaz, C.; Benguria, A.; Mateos, J.; Mas, J.; de Juan, E. The role of gravity in the evolutionary emergence of multicellular complexity: Microgravity effects on arthropod development and aging. Adv. Space Res.?1999, 23, 2075–2082.
[102]  Dubinin, N.P.; Vaulina, E.N. The evolutionary role of gravity. Life Sci. Space Res.?1976, 14, 47–55.
[103]  Yoshino, T.; Walter, M.J.; Katsura, T. Core formation in planetesimals triggered by permeable flow. Nature?2003, 422, 154–157, doi:10.1038/nature01459.
[104]  Stevenson, D.J. Models of the Earth’s Core. Science?1981, 214, 611–619.
[105]  Taylor, S.R. The origin of the earth. AGSO J. Aust. Geol. Geophys.?1997, 17, 27–31.
[106]  Forte, A.M.; Mitrovica, J.X. A resonance in the Earth’s obliquity and precession over the past 20 Myr driven by mantle convection. Nature?1997, 390, 676–680.
[107]  Zhang, Y.Z.; Luo, J.; Nie, Y.X. Gravitational effects of rotating bodies. Mod. Phys. Lett. A?2001, 16, 789–794, doi:10.1142/S021773230100370X.
[108]  Sokoloff, D.D. Geodynamo and models of geomagnetic field generation: A review. Geomagn. Aeron.?2004, 44, 533–542.
[109]  Buffett, B.A. Earth’s core and the geodynamo. Science?2000, 288, 2007–2012, doi:10.1126/science.288.5473.2007.
[110]  Sreenivasan, B. Modelling the geodynamo: Progress and challenges. Curr. Sci.?2010, 99, 1739–1750.
[111]  Olson, P.; Amit, H. Changes in earth’s dipole. Die Naturwissenschaften?2006, 93, 519–542, doi:10.1007/s00114-006-0138-6.
[112]  Greff-Lefftz, M.; Legros, H. Core rotational dynamics and geological events. Science?1999, 286, 1707–1709, doi:10.1126/science.286.5445.1707.
[113]  Courtillot, V.; Besse, J. Magnetic field reversals, polar wander, and core-mantle coupling. Science?1987, 237, 1140–1147.
[114]  Crary, F.J.; Clarke, J.T.; Dougherty, M.K.; Hanlon, P.G.; Hansen, K.C.; Steinberg, J.T.; Barraclough, B.L.; Coates, A.J.; Gerard, J.C.; Grodent, D.; et al. Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature?2005, 433, 720–722.
[115]  Smith, E.J.; Davis, L., Jr.; Jones, D.E.; Colburn, D.S.; Coleman, P.J., Jr.; Dyal, P.; Sonett, C.P. Magnetic field of jupiter and its interaction with the solar wind. Science?1974, 183, 305–306.
[116]  Tarduno, J.A.; Cottrell, R.D.; Watkeys, M.K.; Hofmann, A.; Doubrovine, P.V.; Mamajek, E.E.; Liu, D.; Sibeck, D.G.; Neukirch, L.P.; Usui, Y. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science?2010, 327, 1238–1240.
[117]  Khodachenko, M.L.; Ribas, I.; Lammer, H.; Griessmeier, J.M.; Leitner, M.; Selsis, F.; Eiroa, C.; Hanslmeier, A.; Biernat, H.K.; Farrugia, C.J.; et al. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology?2007, 7, 167–184, doi:10.1089/ast.2006.0127.
[118]  Howard, T. Coronal Mass Ejections: An Introduction; Springer: New York, NY, USA, 2011.
[119]  Cho, A. Particle physics. Hints of greater matter-antimatter asymmetry challenge theorists. Science?2010, 328, 1087, doi:10.1126/science.328.5982.1087-a.
[120]  Ellis, J. Particle physics: Antimatter matters. Nature?2003, 424, 631–634, doi:10.1038/424631a.
[121]  Buser, R. The formation and early evolution of the Milky Way galaxy. Science?2000, 287, 69–74, doi:10.1126/science.287.5450.69.
[122]  Alibert, Y.; Broeg, C.; Benz, W.; Wuchterl, G.; Grasset, O.; Sotin, C.; Eiroa, C.; Henning, T.; Herbst, T.; Kaltenegger, L.; et al. Origin and formation of planetary systems. Astrobiology?2010, 10, 19–32, doi:10.1089/ast.2009.0372.
[123]  Craig, N.C.; Gislason, E.A. First law of thermodynamics; Irreversible and reversible processes. J. Chem. Educ.?2002, 79, 193–200, doi:10.1021/ed079p193.
[124]  Livio, M. The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos; Wiley: New York, NY, USA, 2000; p. 274.
[125]  Guth, A.H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins; Addison-Wesley Publishing: Reading, MA, USA, 1997; p. 358.
[126]  Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys.?2003, 75, 559–606, doi:10.1103/RevModPhys.75.559.
[127]  Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys.?2008, 46, 385–432, doi:10.1146/annurev.astro.46.060407.145243.
[128]  Freese, K. Review of observational evidence for dark matter in the universe and in upcoming searches for dark stars. Cral Ipnl?2009, 36, 113–126.
[129]  Morgan, C.L. Emergent Evolution; the Gifford Lectures; Williams and Norgate: London, UK, 1923; p. 313.
[130]  Bergson, H. Creative Evolution; University Press of America: Lanham, MD, USA, 1984; p. 407.
[131]  Koonin, E.V. The Biological Big Bang model for the major transitions in evolution. Biology Direct?2007, 2, 21–27, doi:10.1186/1745-6150-2-21.
[132]  Brack, A. Liquid water and the origin of life. Orig. Life Evol. Biosph.?1993, 23, 3–10, doi:10.1007/BF01581985.
[133]  Ball, P. Water: Water—An enduring mystery. Nature?2008, 452, 291–292, doi:10.1038/452291a.
[134]  Pollack, G.H.; Figueroa, X.; Zhao, Q. Molecules, water, and radiant energy: New clues for the origin of life. Int. J. Mol. Sci.?2009, 10, 1419–1429, doi:10.3390/ijms10041419.
[135]  Robert, F. Isotope geochemistry. The origin of water on earth. Science?2001, 293, 1056–1058, doi:10.1126/science.1064051.
[136]  Truskett, T.M.; Dill, K.A. A simple analytical model of water. Biophys. Chem.?2003, 105, 449–459, doi:10.1016/S0301-4622(03)00107-8.
[137]  Ben-Naim, A. Molecular Theory of Water and Aqueous Solutions; World Scientific: Singapore and Hackensack, NJ, USA, 2009; p. 629.
[138]  Zachariassen, K.E.; Kristiansen, E. Ice nucleation and antinucleation in nature. Cryobiology?2000, 41, 257–279, doi:10.1006/cryo.2000.2289.
[139]  Dobretsov, N.L. On the early evolutionary stage of the geosphere and biosphere and the problem of early glaciations. Paleontol. J.?2010, 44, 827–838, doi:10.1134/S0031030110070117.
[140]  Van Dishoeck, E.F.; Blake, G.A. Chemical evolution of star-forming regions. Annu. Rev. Astron. Astrophys.?1998, 36, 317–368, doi:10.1146/annurev.astro.36.1.317.
[141]  Johari, G.P.; Hallbrucker, A.; Mayer, E. Two calorimetrically distinct states of liquid water below 150 kelvin. Science?1996, 273, 90–92.
[142]  Pal, S.; Sankaran, N.B.; Samanta, A. Structure of a self-assembled chain of water molecules in a crystal host. Angew. Chem.?2003, 42, 1741–1743, doi:10.1002/anie.200250444.
[143]  Goldblatt, C.; Zahnle, K.J. Faint young Sun paradox remains. Nature?2011, 474, E3–E4.
[144]  Rosing, M.T.; Bird, D.K.; Sleep, N.H.; Bjerrum, C.J. No climate paradox under the faint early Sun. Nature?2010, 464, 744–U117, doi:10.1038/nature08955.
[145]  Jacobsen, S.D.; van der Lee, S.F.M. Earth’s Deep Water Cycle; American Geophysical Union: Washington, DC, USA, 2006; p. 313.
[146]  Hellevang, H. On the forcing mechanism for the H(2)-driven deep biosphere. Int. J. Astrobiol.?2008, 7, 157–167, doi:10.1017/S1473550408004205.
[147]  Oze, C.; Sharma, M. Serpentinization and the inorganic synthesis of H-2 in planetary surfaces. Icarus?2007, 186, 557–561, doi:10.1016/j.icarus.2006.09.012.
[148]  Pierrehumbert, R.; Gaidos, E. Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. Lett.?2011, doi:10.1088/2041-8205/734/1/L13.
[149]  Tian, F.; Toon, O.B.; Pavlov, A.A.; de Sterck, H. A hydrogen-rich early Earth atmosphere. Science?2005, 308, 1014–1017.
[150]  Zakharov, V.V.; Brodskaya, E.N.; Laaksonen, A. Surface tension of water droplets: A molecular dynamics study of model and size dependencies. J. Chem. Phys.?1997, 107, 10675–10683.
[151]  Claussen, W.F. Surface tension and surface structure of water. Science?1967, 156, 1226–1227.
[152]  Stokes, G. On the theory of oscillatory waves. Trans. Camb. Phil. Soc.?1847, 8, 441–455.
[153]  Constantin, A.; Strauss, W. Rotational steady water waves near stagnation. Philos. Trans. Ser. A?2007, 365, 2227–2239, doi:10.1098/rsta.2007.2004.
[154]  Poitevin, B. The continuing mystery of the Memory of Water. Homeopathy?2008, 97, 39–41, doi:10.1016/j.homp.2007.11.003.
[155]  Davenas, E.; Beauvais, F.; Amara, J.; Oberbaum, M.; Robinzon, B.; Miadonna, A.; Tedeschi, A.; Pomeranz, B.; Fortner, P.; Belon, P.; et al. Human basophil de-granulation triggered by very dilute antiserum against ige. Nature?1988, 333, 816–818, doi:10.1038/333816a0.
[156]  Vega, C.; Conde, M.M.; McBride, C.; Abascal, J.L.; Noya, E.G.; Ramirez, R.; Sese, L.M. Heat capacity of water: A signature of nuclear quantum effects. J. Chem. Phys.?2010, 132, doi:10.1063/1.3298879.
[157]  Wyrtki, K.; Wenzel, J. Possible gyre gyre interaction in the Pacific-Ocean. Nature?1984, 309, 538–540, doi:10.1038/309538a0.
[158]  Rypina, I.I.; Pratt, L.J.; Lozier, M.S. Near-surface transport pathways in the north atlantic ocean: Looking for throughput from the subtropical to the subpolar gyre. J. Phys. Oceanogr.?2011, 41, 911–925.
[159]  Zeng, X.C.; Bai, J.E.; Wang, J. Multiwalled ice helixes and ice nanotubes. Proc. Natl. Acad. Sci. USA?2006, 103, 19664–19667.
[160]  Dismukes, G.C.; Klimov, V.V.; Baranov, S.V.; Kozlov, Y.N.; DasGupta, J.; Tyryshkin, A. The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA?2001, 98, 2170–2175.
[161]  Schafer, G. How did the Earth’s oxygen atmosphere originate? Anasthesiol. Intensivmmed. Notfallmedizin Schmerzther.?2004, 39, S19–S27, doi:10.1055/s-2004-818818.
[162]  Thuillier, G. The Sun-Earth relationship. C. R. Acad. Sci. Ser. II?2001, 333, 311–328.
[163]  Falkowski, P.G.; Godfrey, L.V. Electrons, life and the evolution of Earth’s oxygen cycle. Philos. Trans. R. Soc. Lond. Ser. B?2008, 363, 2705–2716, doi:10.1098/rstb.2008.0054.
[164]  Wayne, R.P. Atmospheric chemistry—The evolution of our atmosphere. J. Phothchem. Photobiol. A?1992, 62, 379–396, doi:10.1016/1010-6030(92)85066-4.
[165]  Hyde, W.T.; Crowley, T.J.; Baum, S.K.; Peltier, W.R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature?2000, 405, 425–429, doi:10.1038/35013005.
[166]  Kirschvink, J.L.; Gaidos, E.J.; Bertani, L.E.; Beukes, N.J.; Gutzmer, J.; Maepa, L.N.; Steinberger, R.E. Paleoproterozoic snowball earth: Extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA?2000, 97, 1400–1405.
[167]  Sessions, A.L.; Doughty, D.M.; Welander, P.V.; Summons, R.E.; Newman, D.K. The continuing puzzle of the great oxidation event. Curr. Biol.?2009, 19, R567–R574, doi:10.1016/j.cub.2009.05.054.
[168]  Kleidon, A. Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys. Life Rev.?2010, 7, 424–460, doi:10.1016/j.plrev.2010.10.002.
[169]  Brown, G.C.; Mussett, A.E. The Inaccessible Earth: An Integrated View to Its Structue and Composition, 2nd ed. ed.; Chapman & Hall: London; New York, NY, USA, 1993; p. 276.
[170]  Alfe, D.; Price, G.D.; Gillan, M.J. Oxygen in the Earth’s core: A first-principles study. Phys. Earth Planet. Inter.?1999, 110, 191–210, doi:10.1016/S0031-9201(98)00134-4.
[171]  Dai, W.; Song, X.D. Detection of motion and heterogeneity in Earth’s liquid outer core. Geophys. Res. Lett.?2008, doi:10.1029/2008GL034895.
[172]  Lutgens, F.K.; Tarbuck, E.J. Essentials of Geology, 6th ed. ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998; p. 450.
[173]  Jacoby, W.R. Successes and failures in geodynamics: From past to future. J. Geodyn.?2001, 32, 3–27, doi:10.1016/S0264-3707(01)00026-6.
[174]  Jordan, P. The Expanding Earth; Some Consequences of Dirac’s Gravitation Hypothesis, 1st ed. ed.; Pergamon Press: Oxford, New York, NY, USA, 1971; p. 202.
[175]  Betelev, N.P. The concept of an expanding earth. J. Volcanol. Seismol.?2009, 3, 355–362, doi:10.1134/S0742046309050054.
[176]  Van Kranendonk, M.J. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci. Rev.?2006, 74, 197–240, doi:10.1016/j.earscirev.2005.09.005.
[177]  Smith, A.D.; Lewis, C. The planet beyond the plume hypothesis. Earth Sci. Rev.?1999, 48, 135–182, doi:10.1016/S0012-8252(99)00049-5.
[178]  Rogers, J.J.W.; Santosh, M. Supercontinents in earth history. Gondwana Res.?2003, 6, 357–368, doi:10.1016/S1342-937X(05)70993-X.
[179]  Dewit, M.J.; Hart, R.A. Earths earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos?1993, 30, 309–335, doi:10.1016/0024-4937(93)90043-C.
[180]  de Wit, M.J. On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambrian Res.?1998, 91, 181–226, doi:10.1016/S0301-9268(98)00043-6.
[181]  Perez-Malvaez, C.; Alfredo, B.H.; Manuel, F.O.; Rosaura, R.R. Ninety-four years of the theory of the continental drift of Alfred Lothar Wegener. Interciencia?2006, 31, 536–543.
[182]  Varga, P. On origins of geodynamics and of modern seismology. Acta Geod. Geophys. Hungar.?2010, 45, 231–252, doi:10.1556/AGeod.45.2010.2.8.
[183]  Ito, K. Towards a new view of earthquake phenomena. Pure Appl. Geophys.?1992, 138, 531–548, doi:10.1007/BF00876337.
[184]  Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci.?2011, 41, 383–400, doi:10.1016/j.jseaes.2010.03.009.
[185]  Teisseyre, R.; Takeo, M.; Majewski, E. Earthquake Source Asymmetry, Structural Media and Rotation Effects; Springer: Berlin, Germany and New York, NY, USA, 2006; p. 582.
[186]  Harris, R.A. Earthquake stress triggers, stress shadows, and seismic hazard. Curr. Sci.?2000, 79, 1215–1225.
[187]  Johnston, A.C.; Schweig, E.S. The enigma of the New Madrid earthquakes of 1811–1812. Annu. Rev. Earth Planet. Sci.?1996, 24, 339–384, doi:10.1146/annurev.earth.24.1.339.
[188]  Simpson, J.F. Solar activity as a triggering mechanism for earthquakes. Earth Planet. Sci. Lett.?1967, 3, 417–425, doi:10.1016/0012-821X(67)90071-4.
[189]  Canup, R.M.; Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature?2001, 412, 708–712.
[190]  Taylor, S.R. Origin of the terrestrial planets and the moon. J. R. Soc. West. Aust.?1996, 79 Pt 1, 59–65.
[191]  Singer, S.F.; Bandermann, L.W. Where was the moon formed? Science?1970, 170, 438–439.
[192]  Hartmann, W.K.; Phillips, R.J.; Taylor, G.J. Origin of the Moon; Lunar & Planetary Institute: Houston, TX, USA, 1986; p. 781.
[193]  Hughes, D.W. The open question in selenology. Nature?1987, 327, doi:10.1038/327291a0.
[194]  Prettyman, T.H.; Hagerty, J.J.; Elphic, R.C.; Feldman, W.C.; Lawrence, D.J.; McKinney, G.W.; Vaniman, D.T. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets?, 111, doi:10.1029/2005JE002656.
[195]  Kleine, T.; Palme, H.; Mezger, K.; Halliday, A.N. Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science?2005, 310, 1671–1674, doi:10.1126/science.1118842.
[196]  In addition to resembling the superceded fission hypothesis, this theoretical relationship is spot-on with calculations that time Earth’s origin at ~4.54 billion years ago (bya) and the Moon’s origin at ~4.52 bya, within ~50 million years of Solar System origin.
[197]  Hauri, E.H.; Weinreich, T.; Saal, A.E.; Rutherford, M.C.; van Orman, J.A. High pre-eruptive water contents preserved in lunar melt inclusions. Science?2011, 333, 213–215.
[198]  Clark, R.N. Detection of adsorbed water and hydroxyl on the Moon. Science?2009, 326, 562–564, doi:10.1126/science.1178105.
[199]  Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.P.; Dyar, M.D.; Green, R.; Head, J.W.; et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science?2009, 326, 568–572, doi:10.1126/science.1178658.
[200]  Ward, W.R. Past orientation of the lunar spin axis. Science?1975, 189, 377–379.
[201]  Foster, R.G.; Roenneberg, T. Human responses to the geophysical daily, annual and lunar cycles. Curr. Biol.?2008, 18, R784–R794, doi:10.1016/j.cub.2008.07.003.
[202]  Keeling, C.D.; Whorf, T.P. The 1800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc. Natl. Acad. Sci. USA?2000, 97, 3814–3819, doi:10.1073/pnas.070047197.
[203]  Trask, N.J.; Rowan, L.C. Lunar Orbiter Photographs: Some Fundamental Observations: Preliminary study reveals details of craters, crater distributions, and the major types of terrain. Science?1967, 158, 1529–1535.
[204]  Alvarez, W.; Claeys, P.; Kieffer, S.W. Emplacement of cretaceous-tertiary boundary shocked quartz from chicxulub crater. Science?1995, 269, 930–935.
[205]  Zahnle, K.; Dones, L.; Levison, H.F. Cratering rates on the Galilean satellites. Icarus?1998, 136, 202–222, doi:10.1006/icar.1998.6015.
[206]  In other words, this theory indicates that craters are not due to impact (from without to within) but rather from “expact” (a cratering force exerted from within to without).
[207]  Catling, D.C.; Glein, C.R.; Zahnle, K.J.; Mckay, C.P. Why O-2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology?2005, 5, 415–438, doi:10.1089/ast.2005.5.415.
[208]  Farquhar, J.; Johnston, D.T. The oxygen cycle of the terrestrial planets: Insights into the processing and history of oxygen in surface environments. Rev. Mineral. Geochem..?2008, 68, 463–492, doi:10.2138/rmg.2008.68.16.
[209]  De Leeuw, N.H.; Catlow, C.R.; King, H.E.; Putnis, A.; Muralidharan, K.; Deymier, P.; Stimpfl, M.; Drake, M.J. Where on Earth has our water come from? Chem. Commun.?2010, 46, 8923–8925.
[210]  Valencia, D.; Sasselov, D.D.; O’Connell, R.J. Radius and structure models of the first super-earth planet. Astrophys. J.?2007, 656, 545–551, doi:10.1086/509800.
[211]  Segura, A.; Walkowicz, L.M.; Meadows, V.; Kasting, J.; Hawley, S. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. Astrobiology?2010, 10, 751–771, doi:10.1089/ast.2009.0376.
[212]  Hegstrom, R.A.; Chamberlain, J.P.; Seto, K.; Watson, R.G. Mapping the weak chirality of atoms. Am.J. Phys.?1988, 56, 1086–1092.
[213]  Bai, J.; Wang, J.; Zeng, X.C. Multiwalled ice helixes and ice nanotubes. Proc. Natl. Acad. Sci. USA?2006, 103, 19664–19667.
[214]  Perez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch Starke?2010, 62, 389–420, doi:10.1002/star.201000013.
[215]  Wright, A.J.; Jackson, L.E.; Kariuki, B.M.; Smith, M.E.; Barralet, J.E. Synthesis and structure of a calcium polyphosphate with a unique criss-cross arrangement of helical phosphate chains. Chem. Mater.?2005, 17, 4642–4646.
[216]  Korostelev, A.; Trakhanov, S.; Laurberg, M.; Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell?2006, 126, 1065–1077, doi:10.1016/j.cell.2006.08.032.
[217]  Liu, Q.; Greimann, J.C.; Lima, C.D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell?2006, 127, 1223–1237.
[218]  Luger, K.; Mader, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature?1997, 389, 251–260.
[219]  Cairns-Smith, A.G. Seven Clues to the Origin of Life: A Scientific Detective Story; Cambridge University Press: Cambridge, UK and New York, NY, USA, 1990; p. 131.
[220]  Calusaru, A. Why life can be only a carbon based chemistry. Rev. Roum. Chim.?1989, 34, 1787–1798.
[221]  Levine, J.S.; Augustsson, T.R.; Natarajan, M. The prebiological paleoatmosphere: Stability and composition. Orig. Life?1982, 12, 245–259, doi:10.1007/BF00926894.
[222]  Kasting, J.F. The evolution of the prebiotic atmosphere. Orig. Life?1984, 14, 75–82, doi:10.1007/BF00933642.
[223]  Chittenden, G.J.; Schwartz, A.W. Prebiotic photosynthetic reactions. Biol. Syst.?1981, 14, 15–32.
[224]  Osborne, C.P.; Beerling, D.J. Nature’s green revolution: The remarkable evolutionary rise of C4 plants. Philos. Trans. R. Soc. Lond. Ser. B?2006, 361, 173–194, doi:10.1098/rstb.2005.1737.
[225]  Liedl, K.R.; Hage, W.; Hallbrucker, A.; Mayer, E. Carbonic acid in the gas phase and its astrophysical relevance. Science?1998, 279, 1332–1335, doi:10.1126/science.279.5355.1332.
[226]  Garg, L.C.; Maren, T.H. The rates of hydration of carbon dioxide and dehydration of carbonic acid at 37 degrees. Biochim. Biophys. Acta?1972, 261, 70–76, doi:10.1016/0304-4165(72)90315-7.
[227]  Harris, D.C. Charles David Keeling and the story of atmospheric CO2 measurements. Anal. Chem.?2010, 82, 7865–7870, doi:10.1021/ac1001492.
[228]  Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science?2010, 329, 1330–1333, doi:10.1126/science.1188566.
[229]  Adams, J.M.; Piovesan, G. Long series relationships between global interannual CO2 increment and climate: Evidence for stability and change in role of the tropical and boreal-temperate zones. Chemosphere?2005, 59, 1595–1612, doi:10.1016/j.chemosphere.2005.03.064.
[230]  Schubert, E. The theory of and experimentation into respiratory gas exchange—Carl Ludwig and his school. Pflugers Arch.?1996, 432, R111–119.
[231]  Piiper, J. Carbon dioxide-oxygen relationships in gas exchange of animals. In memory of Hermann Rahn. Boll. Soc. Ital. Biol. Sper.?1991, 67, 635–658.
[232]  Casey, J.R. Why bicarbonate? Biochem. Cell Biol.?2006, 84, 930–939, doi:10.1139/o06-184.
[233]  Dore, J.E.; Lukas, R.; Sadler, D.W.; Church, M.J.; Karl, D.M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. USA?2009, 106, 12235–12240.
[234]  Flores, C.L.; Rodriguez, C.; Petit, T.; Gancedo, C. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol. Rev.?2000, 24, 507–529.
[235]  Siebers, B.; Schonheit, P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr. Opin. Microbiol.?2005, 8, 695–705, doi:10.1016/j.mib.2005.10.014.
[236]  Kandler, O.; Gibbs, M. Asymmetric distribution of C in the glucose phosphates formed during photosynthesis. Plant Physiology?1956, 31, 411–412, doi:10.1104/pp.31.5.411.
[237]  Fraser, N.J.; Hashimoto, H.; Cogdell, R.J. Carotenoids and bacterial photosynthesis: The story so far. Photosynth. Res.?2001, 70, 249–256, doi:10.1023/A:1014715114520.
[238]  Cleaves, H.J. The prebiotic geochemistry of formaldehyde. Precambrian Res.?2008, 164, 111–118, doi:10.1016/j.precamres.2008.04.002.
[239]  Kalapos, M.P. A possible evolutionary role of formaldehyde. Exp. Mol. Med.?1999, 31, 1–4.
[240]  Feng, S.H.; Tian, G.; He, C.; Yuan, H.M.; Mu, Y.; Wang, Y.W.; Wang, L. Hydrothermal biochemistry: From formaldehyde to oligopeptides. J. Mater. Sci.?2008, 43, 2418–2425.
[241]  Sutherland, J.D.; Weaver, G.W. Synthesis of bis(glycoaldehyde) phosphodiester and mixed glycoaldehyde-triose phosphodiesters. Tetrahedron Lett.?1994, 35, 9109–9112, doi:10.1016/0040-4039(94)88442-0.
[242]  Toxvaerd, S. Homochirality in bio-organic systems and glyceraldehyde in the formose reaction. J. Biol. Phys.?2005, 31, 599–606, doi:10.1007/s10867-005-6063-7.
[243]  Hazen, R.M.; Deamer, D.W. Hydrothermal reactions of pyruvic acid: Synthesis, selection, and self-assembly of amphiphilic molecules. Orig. Life Evol. Biosph.?2007, 37, 143–152.
[244]  Martin, S.T.; Guzman, M.I. Prebiotic metabolism: Production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology?2009, 9, 833–842, doi:10.1089/ast.2009.0356.
[245]  Lazcano, A.; Dworkin, J.P.; Miller, S.L. The roads to and from the RNA world. J. Theor. Biol.?2003, 222, 127–134, doi:10.1016/S0022-5193(03)00020-1.
[246]  Bielski, R.; Tencer, M. A possible path to the RNA world: Enantioselective and diastereoselective purification of ribose. Orig. Life Evol. Biosph.?2007, 37, 167–175, doi:10.1007/s11084-006-9022-9.
[247]  Fiechter, A.; Fuhrmann, G.F.; Kappeli, O. Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol.?1981, 22, 123–183, doi:10.1016/S0065-2911(08)60327-6.
[248]  Fukasawa, T.; Nogi, Y. Molecular genetics of galactose metabolism in yeast. Biotechnology?1989, 13, 1–18.
[249]  Benner, S.A.; Kim, H.J.; Ricardo, A.; Illangkoon, H.I.; Kim, M.J.; Carrigan, M.A.; Frye, F. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc.?2011, 133, 9457–9468.
[250]  Berner, R.A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature?2003, 426, 323–326, doi:10.1038/nature02131.
[251]  Kasting, J.F.; Siefert, J.L. Life and the evolution of Earth’s atmosphere. Science?2002, 296, 1066–1068.
[252]  Nunn, J.F. Evolution of the atmosphere. Proc. Geol. Assoc.?1998, 109, 1–13, doi:10.1016/S0016-7878(98)80001-1.
[253]  Hohmann-Marriott, M.F.; Blankenship, R.E. Evolution of photosynthesis. Annu. Rev. Plant Biol.?2011, 62, 515–548, doi:10.1146/annurev-arplant-042110-103811.
[254]  Xiong, J.; Fischer, W.M.; Inoue, K.; Nakahara, M.; Bauer, C.E. Molecular evidence for the early evolution of photosynthesis. Science?2000, 289, 1724–1730.
[255]  Heinrich, R.; Melendez-Hevia, E.; Montero, F.; Nuno, J.C.; Stephani, A.; Waddell, T.G. The structural design of glycolysis: An evolutionary approach. Biochem. Soc. Trans.?1999, 27, 294–298.
[256]  Plaxton, W.C. The Organization and Regulation of Plant Glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol.?1996, 47, 185–214, doi:10.1146/annurev.arplant.47.1.185.
[257]  Guest, J.R.; Russell, G.C. Complexes and complexities of the citric acid cycle in Escherichia coli. Curr. Top. Cell. Regul.?1992, 33, 231–247.
[258]  Thauer, R.K. Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. FEBS?1988, 176, 497–508, doi:10.1111/j.1432-1033.1988.tb14307.x.
[259]  Martin, W.; Schnarrenberger, C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: A case study of functional redundancy in ancient pathways through endosymbiosis. Curr. Genet.?1997, 32, 1–18, doi:10.1007/s002940050241.
[260]  Orgel, L.E. Self-organizing biochemical cycles. Proc. Natl. Acad. Sci. USA?2000, 97, 12503–12507, doi:10.1073/pnas.220406697.
[261]  Holland, H.D. The Chemistry of the Atmosphere and Oceans; Wiley: New York, NY, USA, 1978; p. 351.
[262]  Cintas, P. Tracing the origins and evolution of chirality and handedness in chemical language. Angew. Chem.?2007, 46, 4016–4024, doi:10.1002/anie.200603714.
[263]  Ribo, J.M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science?2001, 292, 2063–2066.
[264]  Imberty, A.; Chanzy, H.; Perez, S.; Buleon, A.; Tran, V. The double-helical nature of the crystalline part of A-starch. J. Mol. Biol.?1988, 201, 365–378, doi:10.1016/0022-2836(88)90144-1.
[265]  Vietor, R.J.; Newman, R.H.; Ha, M.A.; Apperley, D.C.; Jarvis, M.C. Conformational features of crystal-surface cellulose from higher plants. Plant J.?2002, 30, 721–731, doi:10.1046/j.1365-313X.2002.01327.x.
[266]  Sikorski, P.; Hori, R.; Wada, M. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules?2009, 10, 1100–1105, doi:10.1021/bm801251e.
[267]  Hirabayashi, J. On the origin of glycome and saccharide recognition. Trends Glycosci. Glycotechnol.?2004, 16, 63–85, doi:10.4052/tigg.16.63.
[268]  Head, I.M.; Jones, D.M.; Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature?2003, 426, 344–352.
[269]  Glasby, G.P. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol.?2006, 56, 85–98.
[270]  Rushdi, A.I.; Simoneit, B.R. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions. Astrobiology?2005, 5, 749–769, doi:10.1089/ast.2005.5.749.
[271]  McCollom, T.M.; Simoneit, B.R. Abiotic formation of hydrocarbons and oxygenated compounds during thermal decomposition of iron oxalate. Orig. Life Evol. Biosph.?1999, 29, 167–186, doi:10.1023/A:1006556315895.
[272]  Sugisaki, R.; Mimura, K. Mantle hydrocarbons: Abiotic or biotic? Geochim. Cosmochim. Acta?1994, 58, 2527–2542, doi:10.1016/0016-7037(94)90029-9.
[273]  Pavlov, A.A.; Kasting, J.F.; Brown, L.L.; Rages, K.A.; Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. Planets?2000, 105, 11981–11990, doi:10.1029/1999JE001134.
[274]  Sorokhtin, O.G. Generation of abiogenic methane in the earth’s history. Oceanology?2005, 45, 500–510.
[275]  Vyshemirskii, V.S.; Kontorovich, A.E. Evolution of the formation of gaseous hydrocarbons in the Earth’s history. Geol. I Geofiz.?1998, 39, 1392–1401.
[276]  Matthews, C.N. Hydrogen cyanide polymerization: A preferred cosmochemical pathway. J. Br. Interplanet. Soc.?1992, 45, 43–48.
[277]  Colin-Garcia, M.; Negron-Mendoza, A.; Ramos-Bernal, S. Organics produced by irradiation of frozen and liquid HCN solutions: Implications for chemical evolution studies. Astrobiology?2009, 9, 279–288, doi:10.1089/ast.2006.0117.
[278]  This includes carbides ([C]1 models C4?, [C]2 is C24?, and [C]3 is C32?; note the triquantal form) and cyanides (-CN, where N models the quantized e), the latter being thought especially important to the origin of essential biopolymers. Recall that the particle has quantal potential (GIII-1) such that the link between the C atoms can be e, 2e, 3e. Modeling further, an e (electron) gyrolink between C gyromodules accounts for all the alkanes (linear or cyclic), the single bond between carbon atoms; the 2e (dielectron) gyrolink models alkenes, the double bond; and the 3e (trielectron) gyrolink models alkynes, the triple bond. (Again, please note the triquantal organization.) The cycling and re-organization of electrons is found in any other organic chemicals, for example, as in alkadienes.
[279]  Cheng, Q.; Thomas, S.M.; Rouviere, P. Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: Biochemical and molecular basis. Appl. Microbiol. Biotechnol.?2002, 58, 704–711.
[280]  Spormann, A.M.; Widdel, F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation?2000, 11, 85–105, doi:10.1023/A:1011122631799.
[281]  MacFarland, H.N. Toxicology of petroleum hydrocarbons. Occup. Med.?1988, 3, 445–454.
[282]  Catling, D.C.; Zahnle, K.J.; McKay, C. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science?2001, 293, 839–843, doi:10.1126/science.1061976.
[283]  Bender, M.L.; Battle, M.; Keeling, R.F. The O2 balance of the atmosphere: A tool for studying the fate of fossil-fuel CO2. Annu. Rev. Energy Environ.?1998, 23, 207–223, doi:10.1146/annurev.energy.23.1.207.
[284]  Wolfson, R. Energy, Environment, and Climate, 1st ed. ed.; W.W. Norton & Company: New York, NY, USA, 2008; p. 532.
[285]  Richmond, G.L.; McFearin, C.L.; Beaman, D.K.; Moore, F.G. From Franklin to today: Toward a molecular level understanding of bonding and adsorption at the oil-water interface. J. Phys. Chem. C?2009, 113, 1171–1188.
[286]  Trevors, J.T. Possible origin of a membrane in the subsurface of the Earth. Cell Biol. Int.?2003, 27, 451–457, doi:10.1016/S1065-6995(03)00073-8.
[287]  Weber, A.L. Chemical constraints governing the origin of metabolism: The thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig. Life Evol. Biosph.?2002, 32, 333–357, doi:10.1023/A:1020588925703.
[288]  Further, the exchanged electron in these oxygyres can represent any primary, secondary, or tertiary electrogyre or combination thereof. Finally, because a carbyon particle exists in either one gyrostate or another in spacetime (GV), its arrangement within a polymer can undergo gyrostate interconversion depending upon the gyradaptive forces of the oxyon.
[289]  Monnard, P.A.; Maurer, S.E.; Deamer, D.W.; Boncella, J.M. Chemical evolution of amphiphiles: Glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology?2009, 9, 979–987, doi:10.1089/ast.2009.0384.
[290]  Ohlrogge, J.B.; Jaworski, J.G. Regulation of Fatty Acid Synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol.?1997, 48, 109–136, doi:10.1146/annurev.arplant.48.1.109.
[291]  Slabas, A.R.; Brown, A.; Sinden, B.S.; Swinhoe, R.; Simon, J.W.; Ashton, A.R.; Whitfeld, P.R.; Elborough, K.M. Pivotal reactions in fatty acid synthesis. Prog. Lipid Res.?1994, 33, 39–46, doi:10.1016/0163-7827(94)90007-8.
[292]  Weber, A.L. Origin of fatty-acid synthesis—Thermodynamics and kinetics of reaction pathways. J. Mol. Evol.?1991, 32, 93–100, doi:10.1007/BF02515381.
[293]  Huber, C.; Wachtershauser, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science?1997, 276, 245–247, doi:10.1126/science.276.5310.245.
[294]  Goldanskii, V.I. Cold prebiotic evolution, tunneling, chirality and exobiology. Phys. Orig. Homochirality Life?1996, 211–230.
[295]  Venema, K.; Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta?2010, 1801, 1175–1183, doi:10.1016/j.bbalip.2010.07.007.
[296]  Beauchamp, E.; Rioux, V.; Legrand, P. New regulatory and signal functions for myristic acid. Med. Sci.?2009, 25, 57–63.
[297]  Dabadie, H.; Peuchant, E.; Motta, C.; Bernard, M.; Mendy, F. Myristic acid: Effects on HDL, omega3, LDL oxidation and membrane fluidity. Sci. Des Aliment.?2008, 28, 134–142, doi:10.3166/sda.28.134-142.
[298]  Biochemistry of Lipids, Lipoproteins and Membranes, 5th ed.; Vance, D.E., Vance, J.E., Eds.; Elsevier: Amsterdam, The Netherlands and Boston, MA, USA, 2008; p. 631.
[299]  Kuksis, A. Fatty Acids and Glycerides; Plenum Press: New York, NY, USA, 1978; p. 469.
[300]  Fujita, Y.; Matsuoka, H.; Hirooka, K. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol.?2007, 66, 829–839, doi:10.1111/j.1365-2958.2007.05947.x.
[301]  Van Roermund, C.W.; Waterham, H.R.; Ijlst, L.; Wanders, R.J. Fatty acid metabolism in Saccharomyces cerevisiae. Cell. Mol. Life Sci.?2003, 60, 1838–1851, doi:10.1007/s00018-003-3076-x.
[302]  Small, D.M. The effects of glyceride structure on absorption and metabolism. Annu. Rev. Nutr.?1991, 11, 413–434, doi:10.1146/annurev.nu.11.070191.002213.
[303]  Hsieh, H.H.; Jewitt, D. A population of comets in the main asteroid belt. Science?2006, 312, 561–563, doi:10.1126/science.1125150.
[304]  Brown, M.E.; Barkume, K.M.; Ragozzine, D.; Schaller, E.L. A collisional family of icy objects in the Kuiper belt. Nature?2007, 446, 294–296.
[305]  Michel, P.; Benz, W.; Richardson, D.C. Disruption of fragmented parent bodies as the origin of asteroid families. Nature?2003, 421, 608–611.
[306]  Levison, H.F.; Duncan, M.J.; Brasser, R.; Kaufmann, D.E. Capture of the Sun’s Oort cloud from stars in its birth cluster. Science?2010, 329, 187–190.
[307]  Stern, S.A. The evolution of comets in the Oort cloud and Kuiper belt. Nature?2003, 424, 639–642, doi:10.1038/nature01725.
[308]  Sunshine, J.M.; A’Hearn, M.F.; Groussin, O.; Li, J.Y.; Belton, M.J.; Delamere, W.A.; Kissel, J.; Klaasen, K.P.; McFadden, L.A.; Meech, K.J.; et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science?2006, 311, 1453–1455.
[309]  Mumma, M.J.; DiSanti, M.A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C.D.; Xie, D.X. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: Evidence for interstellar origin. Science?1996, 272, 1310–1314.
[310]  Kirschvink, J.L.; Maine, A.T.; Vali, H. Paleomagnetic evidence of a low-temperature origin of carbonate in the Martian meteorite ALH84001. Science?1997, 275, 1629–1633.
[311]  Fischer, T.P.; Burnard, P.; Marty, B.; Hilton, D.R.; Furi, E.; Palhol, F.; Sharp, Z.D.; Mangasini, F. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature?2009, 459, 77–80.
[312]  Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature?2001, 414, 879–883.
[313]  For example, cometary orbit around planets and their moons is modeled as an ohiogyre, with the binary planet-moon system exerting the attractorepulsive effects that adapt and sustain the cyclical path.
[314]  Free, A.; Barton, N.H. Do evolution and ecology need the Gaia hypothesis? Trends Ecol. Evol.?2007, 22, 611–619, doi:10.1016/j.tree.2007.07.007.
[315]  Kerr, R.A. No Longer Willful, Gaia Becomes Respectable: The Gaia hypothesis, that Earth is a single huge organism intentionally creating an optimum environment for itself; has been made more palatable; interesting science is coming of it. Science?1988, 240, 393–395.
[316]  Lovelock, J. Gaia: The Practical Science of Planetary Medicine; Oxford University Press: Oxford, UK and New York, NY, USA, 2000; p. 192.
[317]  Monnard, P.A.; Deamer, D.W. Membrane self-assembly processes: Steps toward the first cellular life. The Anatomical Record?2002, 268, 196–207, doi:10.1002/ar.10154.
[318]  Norris, V.; Raine, D.J. A fission-fusion origin for life. Orig. Life Evol. Biosph.?1998, 28, 523–537, doi:10.1023/A:1006568226145.
[319]  Maddox, J. Origin of the first cell membrane? Nature?1994, 371, doi:10.1038/371101a0.
[320]  Lipmann, F. Metabolic Generation and Utilization of Phosphate Bond Energy; Wiley: Hoboken, NJ, USA, 2006; Volume 1.
[321]  Pasek, M.A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA?2008, 105, 853–858, doi:10.1073/pnas.0708205105.
[322]  Schopf, J.W.; Packer, B.M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science?1987, 237, 70–73.
[323]  Knoll, A.H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth; Princeton University Press: Princeton, NJ, USA, 2003; p. 277.
[324]  Liebl, V.; Novak, V.J.; Masinovsky, Z.; Pacltova, B.; Bejsovcova, L. The evolution of prebiological self-organization: Probable colloid-chemical evolution of first prokaryotic cells. Orig. Life?1984, 14, 323–334, doi:10.1007/BF00933674.
[325]  Luisi, P.L.; Rasi, P.S.; Mavelli, F. A possible route to prebiotic vesicle reproduction. Artif. Life?2004, 10, 297–308, doi:10.1162/1064546041255601.
[326]  Monnard, P.A.; Ziock, H.J. Question 9: Prospects for the construction of artificial cells or protocells. Orig. Life Evol. Biosph.?2007, 37, 469–472, doi:10.1007/s11084-007-9081-6.
[327]  Qian, H.; Beard, D.A. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem.?2005, 114, 213–220, doi:10.1016/j.bpc.2004.12.001.
[328]  Alberty, R.A. Biochemical thermodynamics. Biochim. Biophys. Acta?1994, 1207, 1–11, doi:10.1016/0167-4838(94)90045-0.
[329]  Walsh, C.T.; Benson, T.E.; Kim, D.H.; Lees, W.J. The versatility of phosphoenolpyruvate and its vinyl ether products in biosynthesis. Chem. Biol.?1996, 3, 83–91, doi:10.1016/S1074-5521(96)90282-3.
[330]  Gabor, E.; Gohler, A.K.; Kosfeld, A.; Staab, A.; Kremling, A.; Jahreis, K. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur. J. Cell Biol.?2011, 90, 711–720, doi:10.1016/j.ejcb.2011.04.002.
[331]  McCleary, W.R.; Stock, J.B.; Ninfa, A.J. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol.?1993, 175, 2793–2798.
[332]  Wolfe, A.J.; Chang, D.E.; Walker, J.D.; Seitz-Partridge, J.E.; Vidaurri, M.D.; Lange, C.F.; Pruss, B.M.; Henk, M.C.; Larkin, J.C.; Conway, T. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol.?2003, 48, 977–988, doi:10.1046/j.1365-2958.2003.03457.x.
[333]  Hers, H.G.; Hue, L. Gluconeogenesis and related aspects of glycolysis. Annu. Rev. Biochem.?1983, 52, 617–653, doi:10.1146/annurev.bi.52.070183.003153.
[334]  Mather, M.W.; Gennis, R.B. Kinetic studies of the lipid-activated pyruvate oxidase flavoprotein of Escherichia coli. J. Biol. Chem.?1985, 260, 16148–16155.
[335]  Svensson, P.; Blasing, O.E.; Westhoff, P. Evolution of C4 phosphoenolpyruvate carboxylase. Arch. Biochem. Biophys.?2003, 414, 180–188, doi:10.1016/S0003-9861(03)00165-6.
[336]  Comte, B.; Vincent, G.; Bouchard, B.; Des Rosiers, C. Probing the origin of acetyl-CoA and oxaloacetate entering the citric acid cycle from the 13C labeling of citrate released by perfused rat hearts. J. Biol. Chem.?1997, 272, 26117–26124.
[337]  Kent, C.; Carman, G.M.; Spence, M.W.; Dowhan, W. Regulation of eukaryotic phospholipid metabolism. FASEB J.?1991, 5, 2258–2266.
[338]  Alb, J.G., Jr.; Kearns, M.A.; Bankaitis, V.A. Phospholipid metabolism and membrane dynamics. Curr. Opin. Cell. Biol.?1996, 8, 534–541, doi:10.1016/S0955-0674(96)80032-9.
[339]  Hamilton, J.A. Fatty acid transport: Difficult or easy? J. Lipid Res.?1998, 39, 467–481.
[340]  Walter, A.; Kuehl, G.; Barnes, K.; VanderWaerdt, G. The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: Effects of sodium chloride, sucrose and urea. Biochim. Biophys. Acta?2000, 1508, 20–33, doi:10.1016/S0304-4157(00)00005-8.
[341]  Lichtenberg, D.; Opatowski, E.; Kozlov, M.M. Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim. Biophys. Acta?2000, 1508, 1–19, doi:10.1016/S0304-4157(00)00004-6.
[342]  Zhang, J.; Jing, B.; Tokutake, N.; Regen, S.L. Transbilayer complementarity of phospholipids. A look beyond the fluid mosaic model. J. Am. Chem. Soc.?2004, 126, 10856–10857.
[343]  Wisniewska, A.; Draus, J.; Subczynski, W.K. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cell. Mol. Biol. Lett.?2003, 8, 147–159.
[344]  Sinensky, M. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA?1974, 71, 522–525, doi:10.1073/pnas.71.2.522.
[345]  Williams, N.H. Models for biological phosphoryl transfer. Biochim. Biophys. Acta?2004, 1697, 279–287, doi:10.1016/j.bbapap.2003.11.031.
[346]  Florian, J.; Warshel, A. A fundamental assumption about OH- attack in phosphate ester hydrolysis is not fully justified. J. Am. Chem. Soc.?1997, 119, 5473–5474, doi:10.1021/ja964270m.
[347]  Meister, A. Carboxy phosphate: An intermediate in the enzymatic synthesis of carbamyl phosphate. Trans. N. Y. Acad. Sci.?1983, 41, 117–128, doi:10.1111/j.2164-0947.1983.tb02792.x.
[348]  Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature?1997, 387, 569–572, doi:10.1038/42408.
[349]  Zhang, J.; Jing, B.; Janout, V.; Regen, S.L. Detecting cross talk between two halves of a phospholipid bilayer. Langmuir?2007, 23, 8709–8712, doi:10.1021/la701503v.
[350]  Klute, M.J.; Melancon, P.; Dacks, J.B. Evolution and diversity of the Golgi. Cold Spring Harbor Perspect. Biol.?2011, 3, doi:10.1101/cshperspect.a007849.
[351]  Sparkes, I.A.; Frigerio, L.; Tolley, N.; Hawes, C. The plant endoplasmic reticulum: A cell-wide web. Biochem. J.?2009, 423, 145–155, doi:10.1042/BJ20091113.
[352]  Mironov, A.A.; Banin, V.V.; Sesorova, I.S.; Dolgikh, V.V.; Luini, A.; Beznoussenko, G.V. Evolution of the endoplasmic reticulum and the Golgi complex. Adv. Exp. Med. Biol.?2007, 607, 61–72, doi:10.1007/978-0-387-74021-8_5.
[353]  Schrader, M.; Fahimi, H.D. The peroxisome: Still a mysterious organelle. Histochem. Cell Biol.?2008, 129, 421–440, doi:10.1007/s00418-008-0396-9.
[354]  Weisman, L.S. Organelles on the move: Insights from yeast vacuole inheritance. Nat. Rev. Mol. Cell Biol.?2006, 7, 243–252, doi:10.1038/nrm1892.
[355]  Dacks, J.B.; Field, M.C. Evolution of the eukaryotic membrane-trafficking system: Origin, tempo and mode. J. Cell Sci.?2007, 120, 2977–2985, doi:10.1242/jcs.013250.
[356]  Nota bene: While these endomembrane systems are theoretically positioned here, the modeling the origin of these systems is premature—evolutionarily consistent modeling requires thermodynamic feedback or shunting of IEM from supervenient gyrosystems (3.5–3.8).
[357]  Homan, R.; Pownall, H.J. Transbilayer diffusion of phospholipids: Dependence on headgroup structure and acyl chain length. Biochim. Biophys. Acta?1988, 938, 155–166, doi:10.1016/0005-2736(88)90155-1.
[358]  Kamp, F.; Zakim, D.; Zhang, F.; Noy, N.; Hamilton, J.A. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry?1995, 34, 11928–11937, doi:10.1021/bi00037a034.
[359]  Lamarche, M.G.; Wanner, B.L.; Crepin, S.; Harel, J. The phosphate regulon and bacterial virulence: A regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev.?2008, 32, 461–473, doi:10.1111/j.1574-6976.2008.00101.x.
[360]  Berndt, T.; Kumar, R. Phosphatonins and the regulation of phosphate homeostasis. Annu. Rev. Physiol.?2007, 69, 341–359, doi:10.1146/annurev.physiol.69.040705.141729.
[361]  Del Popolo, M.G.; Ballone, P. Melting behavior of an idealized membrane model. J. Chem. Phys.?2008, 128, doi:10.1063/1.2804423.
[362]  Wassall, S.R.; Stillwell, W. Polyunsaturated fatty acid-cholesterol interactions: Domain formation in membranes. Biochim. Biophys. Acta?2009, 1788, 24–32, doi:10.1016/j.bbamem.2008.10.011.
[363]  Reinhart, M.P. Intracellular sterol trafficking. Experientia?1990, 46, 599–611, doi:10.1007/BF01939699.
[364]  Lucy, J.A.; Dingle, J.T. Fat-Soluble Vitamins and Biological Membranes. Nature?1964, 204, 156–160.
[365]  Navas, P.; Villalba, J.M.; de Cabo, R. The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion?2007, 7, S34–S40, doi:10.1016/j.mito.2007.02.010.
[366]  White, H.B. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol.?1976, 7, 101–104, doi:10.1007/BF01732468.
[367]  Hendrich, A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin.?2006, 27, 27–40, doi:10.1111/j.1745-7254.2006.00238.x.
[368]  Lemaire-Ewing, S.; Desrumaux, C.; Neel, D.; Lagrost, L. Vitamin E transport, membrane incorporation and cell metabolism: Is alpha-tocopherol in lipid rafts an oar in the lifeboat? Mol. Nutr. Food Res.?2010, 54, 631–640, doi:10.1002/mnfr.200900445.
[369]  Kulaev, I.; Kulakovskaya, T. Polyphosphate and phosphate pump. Annu. Rev. Microbiol.?2000, 54, 709–734, doi:10.1146/annurev.micro.54.1.709.
[370]  Achbergerova, L.; Nahalka, J. Polyphosphate—An ancient energy source and active metabolic regulator. Microb. Cell Fact.?2011, 10, doi:10.1186/1475-2859-10-63.
[371]  Kornberg, A. Inorganic polyphosphate: A molecule of many functions. Progr. Mol. Subcell. Biol.?1999, 23, 1–18, doi:10.1007/978-3-642-58444-2_1.
[372]  Crawford, G.E.; Earnshaw, J.C. Phase transitions in monoglyceride bilayers. A light scattering study. Biophys. J.?1986, 49, 869–889, doi:10.1016/S0006-3495(86)83716-X.
[373]  Rotering, H.; Raetz, C.R. Appearance of monoglyceride and triglyceride in the cell envelope of Escherichia coli mutants defective in diglyceride kinase. J. Biol. Chem.?1983, 258, 8068–8073.
[374]  Carrasco, S.; Merida, I. Diacylglycerol, when simplicity becomes complex. Trends Biochem. Sci.?2007, 32, 27–36, doi:10.1016/j.tibs.2006.11.004.
[375]  Khandelia, H.; Duelund, L.; Pakkanen, K.I.; Ipsen, J.H. Triglyceride blisters in lipid bilayers: Implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One?2010, 5, doi:10.1371/journal.pone.0012811.
[376]  Olofsson, S.O.; Bostrom, P.; Andersson, L.; Rutberg, M.; Levin, M.; Perman, J.; Boren, J. Triglyceride containing lipid droplets and lipid droplet-associated proteins. Curr. Opin. Lipidol.?2008, 19, 441–447, doi:10.1097/MOL.0b013e32830dd09b.
[377]  Graves, J.D.; Krebs, E.G. Protein phosphorylation and signal transduction. Pharmacol. Ther.?1999, 82, 111–121, doi:10.1016/S0163-7258(98)00056-4.
[378]  Towler, D.A. Inorganic pyrophosphate: A paracrine regulator of vascular calcification and smooth muscle phenotype. Arterioscler. Thromb. Vasc. Biol.?2005, 25, 651–654, doi:10.1161/01.ATV.0000158943.79580.9d.
[379]  Mansurova, S.E. Inorganic pyrophosphate in mitochondrial metabolism. Biochim. Biophys. Acta?1989, 977, 237–247, doi:10.1016/S0005-2728(89)80078-7.
[380]  Reusch, R.N. Transmembrane ion transport by polyphosphate/poly-(R)-3-hydroxybutyrate complexes. Biochem. Biokhimiia?2000, 65, 280–295.
[381]  Roels, J.; Verstraete, W. Biological formation of volatile phosphorus compounds. Bioresour. Technol.?2001, 79, 243–250, doi:10.1016/S0960-8524(01)00032-3.
[382]  Pasek, M.A.; Lauretta, D.S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology?2005, 5, 515–535, doi:10.1089/ast.2005.5.515.
[383]  Schink, B.; Friedrich, M. Phosphite oxidation by sulphate reduction. Nature?2000, 406, doi:10.1038/35017644.
[384]  Based upon thermodynamic relationships of a focagyre with distal subgyrosystems (GXI–1), the tertiary phosphogyre models phosphate relationships with elements in the electrogyre, explaining the bioproduction and bioremediation of volatile phosphorous compounds such as phosphines and phosphides.
[385]  Paytan, A.; McLaughlin, K. The oceanic phosphorus cycle. Curr. Rev.?2007, 107, 563–576.
[386]  Cembella, A.D.; Antia, N.J.; Harrison, P.J. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective. Part 2. Crit. Rev. Microbiol.?1984, 11, 13–81, doi:10.3109/10408418409105902.
[387]  Cembella, A.D.; Antia, N.J.; Harrison, P.J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. Crit. Rev. Microbiol.?1984, 10, 317–391.
[388]  Cavalier-Smith, T. Membrane heredity and early chloroplast evolution. Trends Plant Sci.?2000, 5, 174–182, doi:10.1016/S1360-1385(00)01598-3.
[389]  Saraste, J.; Goud, B. Functional symmetry of endomembranes. Mol. Biol. Cell?2007, 18, 1430–1436, doi:10.1091/mbc.E06-10-0933.
[390]  Morowitz, H.J.; Heinz, B.; Deamer, D.W. The chemical logic of a minimum protocell. Orig. Life Evol. Biosph.?1988, 18, 281–287, doi:10.1007/BF01804674.
[391]  Segre, D.; Ben-Eli, D.; Deamer, D.W.; Lancet, D. The lipid world. Orig. Life Evol. Biosph.?2001, 31, 119–145, doi:10.1023/A:1006746807104.
[392]  Kiss, D.L.; Andrulis, E.D. The exozyme model: A continuum of functionally distinct complexes. RNA?2011, 17, 1–13, doi:10.1261/rna.2364811.
[393]  Thieffry, D.; Sarkar, S. Forty years under the central dogma. Trends Biochem. Sci.?1998, 23, 312–316, doi:10.1016/S0968-0004(98)01244-4.
[394]  Henikoff, S. Beyond the central dogma. Bioinformatics?2002, 18, 223–225.
[395]  Temin, H.M.; Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature?1970, 226, 1211–1213.
[396]  Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature?1970, 226, 1209–1211, doi:10.1038/2261209a0.
[397]  Gilbert, W. Origin of life—The rna world. Nature?1986, 319, 618–618, doi:10.1038/319618a0.
[398]  Bartel, D.P.; Unrau, P.J. RNA-catalysed nucleotide synthesis. Nature?1998, 395, 260–263, doi:10.1038/26193.
[399]  Eschenmoser, A. Chemical etiology of nucleic acid structure. Science?1999, 284, 2118–2124, doi:10.1126/science.284.5423.2118.
[400]  Orgel, L.E. The origin of life—A review of facts and speculations. Trends Biochem. Sci.?1998, 23, 491–495, doi:10.1016/S0968-0004(98)01300-0.
[401]  Ferris, J. Origins of life. Chemical replication. Nature?1994, 369, 184–185, doi:10.1038/369184a0.
[402]  Ridley, A.J. Rho family proteins: Coordinating cell responses. Trends Cell Biol.?2001, 11, 471–477, doi:10.1016/S0962-8924(01)02153-5.
[403]  Prodromou, C.; Roe, S.M.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell?1997, 90, 65–75, doi:10.1016/S0092-8674(00)80314-1.
[404]  Chavrier, P.; Goud, B. The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell. Biol.?1999, 11, 466–475, doi:10.1016/S0955-0674(99)80067-2.
[405]  Avis, J.M.; Clarke, P.R. Ran, a GTPase involved in nuclear processes: Its regulators and effectors. J. Cell Sci.?1996, 109, 2423–2427.
[406]  Anderson, C.M.; Parkinson, F.E. Potential signalling roles for UTP and UDP: Sources, regulation and release of uracil nucleotides. Trends Pharmacol. Sci.?1997, 18, 387–392.
[407]  Renner, A.B.; Rieger, K.; Grunow, D.; Zimmermann-Kordmann, M.; Gohlke, M.; Reutter, W. Liver-specific increase of UTP and UDP-sugar concentrations in rats induced by dietary vitamin B6-deficiency and its relation to complex N-glycan structures of liver membrane-proteins. Glycoconj. J.?2007, 24, 531–541, doi:10.1007/s10719-007-9048-x.
[408]  Chang, Y.F.; Carman, G.M. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Prog. Lipid Res.?2008, 47, 333–339, doi:10.1016/j.plipres.2008.03.004.
[409]  Turnock, D.C.; Ferguson, M.A. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot. Cell?2007, 6, 1450–1463, doi:10.1128/EC.00175-07.
[410]  Mitchell, P.; Moyle, J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature?1967, 213, 137–139, doi:10.1038/213137a0.
[411]  Urata, H.; Shimizu, H.; Akagi, M. Structural studies of heterochiral DNA/DNA, RNA/RNA, AND DNA/RNA duplexes. Nucleosides Nucleotides Nucleic Acids?2006, 25, 359–367, doi:10.1080/15257770600683920.
[412]  Kulaev, I.S.; Mansurova, S.E.; Burlakova, E.B.; Dukhovich, V.F. Why ATP instead of pyrophosphate—interrelation between ATP and pyrophosphate production during evolution and in contemporary organisms. Biosystems?1980, 12, 177–180, doi:10.1016/0303-2647(80)90015-5.
[413]  This spatiotemporal and thermodynamic relationship explains the biomembrane-dependent transition from phosphorylation with pyrophosphate formation to phosphorylation with ATP formation.
[414]  Fuda, N.J.; Ardehali, M.B.; Lis, J.T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature?2009, 461, 186–192.
[415]  Malik, S.; Roeder, R.G. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci.?2005, 30, 256–263, doi:10.1016/j.tibs.2005.03.009.
[416]  Tjian, R. The biochemistry of transcription in eukaryotes: A paradigm for multisubunit regulatory complexes. Philos. Trans. R. Soc. Lond. Ser. B?1996, 351, 491–499, doi:10.1098/rstb.1996.0047.
[417]  Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell?2000, 101, 25–33, doi:10.1016/S0092-8674(00)80620-0.
[418]  Liu, Q.; Paroo, Z. Biochemical principles of small RNA pathways. Annu. Rev. Biochem.?2010, 79, 295–319, doi:10.1146/annurev.biochem.052208.151733.
[419]  Pullirsch, D.; Jantsch, M.F. Proteome diversification by adenosine to inosine RNA editing. RNA Biol.?2010, 7, 205–212, doi:10.4161/rna.7.2.11286.
[420]  Gott, J.M. Expanding genome capacity via RNA editing. Comptes Rendus Biol.?2003, 326, 901–908, doi:10.1016/j.crvi.2003.09.004.
[421]  Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet.?2006, 7, 211–221.
[422]  Borek, E.; Baliga, B.S.; Gehrke, C.W.; Kuo, C.W.; Belman, S.; Troll, W.; Waalkes, T.P. High turnover rate of transfer RNA in tumor tissue. Cancer Res.?1977, 37, 3362–3366.
[423]  Gill, S.C.; Yager, T.D.; von Hippel, P.H. Thermodynamic analysis of the transcription cycle in E. coli. Biophys. Chem.?1990, 37, 239–250, doi:10.1016/0301-4622(90)88023-L.
[424]  Spellman, P.T.; Sherlock, G.; Zhang, M.Q.; Iyer, V.R.; Anders, K.; Eisen, M.B.; Brown, P.O.; Botstein, D.; Futcher, B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell?1998, 9, 3273–3297.
[425]  Krejcova, R.; Horska, K. Nucleoside diphosphate kinases. Chem. Listy?1997, 91, 466–476.
[426]  Briggs, A.G.; Bent, A.F. Poly(ADP-ribosyl)ation in plants. Trends Plant Sci.?2011, 16, 372–380, doi:10.1016/j.tplants.2011.03.008.
[427]  Proudfoot, N. Connecting transcription to messenger RNA processing. Trends Biochem. Sci.?2000, 25, 290–293, doi:10.1016/S0968-0004(00)01591-7.
[428]  Bentley, D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell Biol.?1999, 11, 347–351, doi:10.1016/S0955-0674(99)80048-9.
[429]  McClain, W.H. Transfer RNA identity. FASEB J.?1993, 7, 72–78.
[430]  Sun, F.J.; Caetano-Anolles, G. Transfer RNA and the origins of diversified life. Science Progress?2008, 91, 265–284, doi:10.3184/003685008X360650.
[431]  Nazar, R.N. Ribosomal RNA processing and ribosome biogenesis in eukaryotes. IUBMB Life?2004, 56, 457–465, doi:10.1080/15216540400010867.
[432]  Moss, T. At the crossroads of growth control; making ribosomal RNA. Curr. Opin. Genet. Dev.?2004, 14, 210–217, doi:10.1016/j.gde.2004.02.005.
[433]  Barraud, P.; Schmitt, E.; Mechulam, Y.; Dardel, F.; Tisne, C. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res.?2008, 36, 4894–4901, doi:10.1093/nar/gkn462.
[434]  Rupert, P.B.; Ferre-D’Amare, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature?2001, 410, 780–786, doi:10.1038/35071009.
[435]  Stahley, M.R.; Strobel, S.A. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science?2005, 309, 1587–1590.
[436]  Selmer, M.; Dunham, C.M.; Murphy, F.V., 4th; Weixlbaumer, A.; Petry, S.; Kelley, A.C.; Weir, J.R.; Ramakrishnan, V. Structure of the 70S ribosome complexed with mRNA and tRNA. Science?2006, 313, 1935–1942, doi:10.1126/science.1131127.
[437]  Antoni, F.A. Molecular diversity of cyclic AMP signalling. Front. Neuroendocrinol.?2000, 21, 103–132, doi:10.1006/frne.1999.0193.
[438]  Bolwell, G.P. Cyclic AMP, the reluctant messenger in plants. Trends Biochem. Sci.?1995, 20, 492–495, doi:10.1016/S0968-0004(00)89114-8.
[439]  Roelofs, J.; Smith, J.L.; Van Haastert, P.J. cGMP signalling: Different ways to create a pathway. Trends Genet.?2003, 19, 132–134, doi:10.1016/S0168-9525(02)00044-6.
[440]  Ryan, R.P.; Fouhy, Y.; Lucey, J.F.; Jiang, B.L.; He, Y.Q.; Feng, J.X.; Tang, J.L.; Dow, J.M. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol. Microbiol.?2007, 63, 429–442.
[441]  Mills, E.; Pultz, I.S.; Kulasekara, H.D.; Miller, S.I. The bacterial second messenger c-di-GMP: Mechanisms of signalling. Cell. Microbiol.?2011, 13, 1122–1129, doi:10.1111/j.1462-5822.2011.01619.x.
[442]  Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci.?2007, 32, 12–19, doi:10.1016/j.tibs.2006.11.006.
[443]  Muller, F. The flavin redox-system and its biological function. Topics Curr. Chem.?1983, 108, 71–107, doi:10.1007/3-540-11846-2_3.
[444]  Given the emergence of vitamins in the carbogyre, and the relativistically strong creatodestructive force it exerts through the phosphogyre on the ribogyre (GXIII), the compounds flavin adenine dinucleotide and flavin mononucleotide are also positioned in the gyrobase of the secondary majorgyre.
[445]  Koonin, E.V.; Novozhilov, A.S. Origin and evolution of the genetic code: The universal enigma. IUBMB Life?2009, 61, 99–111, doi:10.1002/iub.146.
[446]  Westover, K.D.; Bushnell, D.A.; Kornberg, R.D. Structural basis of transcription: Nucleotide selection by rotation in the RNA polymerase II active center. Cell?2004, 119, 481–489, doi:10.1016/j.cell.2004.10.016.
[447]  Anand, V.S.; Patel, S.S. Transient state kinetics of transcription elongation by T7 RNA polymerase. J. Biol. Chem.?2006, 281, 35677–35685.
[448]  Alvager, T.; Graham, G.; Hilleke, R.; Hutchison, D.; Westgard, J. On the information content of the genetic code. Biol. Syst.?1989, 22, 189–196.
[449]  Crick, F.H. Codon—anticodon pairing: The wobble hypothesis. J. Mol. Biol.?1966, 19, 548–555, doi:10.1016/S0022-2836(66)80022-0.
[450]  Forterre, P. Defining life: The virus viewpoint. Orig. Life Evol. Biosph.?2010, 40, 151–160, doi:10.1007/s11084-010-9194-1.
[451]  Villarreal, L.P. Viruses and the Evolution of Life; ASM Press: Washington, DC, USA, 2005; p. 395.
[452]  Dadalti, P.; Goodheart, C. Did the first virus self-assemble from self-replicating prion proteins and RNA? Med. Hypotheses?2007, 69, 724–730, doi:10.1016/j.mehy.2007.03.031.
[453]  Becker, Y. Molecular evolution of viruses: An interim summary. Virus Genes?1995, 11, 299–302, doi:10.1007/BF01728667.
[454]  Holmes, E.C. On the origin and evolution of the human immunodeficiency virus (HIV). Biol. Rev. Camb. Philos. Soc.?2001, 76, 239–254, doi:10.1017/S1464793101005668.
[455]  Zandi, R.; van der Schoot, P. Size regulation of ss-RNA viruses. Biophys. J.?2009, 96, 9–20.
[456]  Basile, B.; Lazcano, A.; Oro, J. Prebiotic syntheses of purines and pyrimidines. Adv. Space Res.?1984, 4, 125–131.
[457]  Sutherland, J.D. Ribonucleotides. Cold Spring Harbor Perspect. Biol.?2010, 2, a005439, doi:10.1101/cshperspect.a005439.
[458]  Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res.?2007, 42, 28–42, doi:10.1111/j.1600-079X.2006.00407.x.
[459]  Cassone, V.M.; Natesan, A.K. Time and time again: The phylogeny of melatonin as a transducer of biological time. J. Biol. Rhythm.?1997, 12, 489–497, doi:10.1177/074873049701200602.
[460]  Stefano, G.B.; Kream, R.M. Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (Review). Int. J. Mol. Med.?2007, 20, 837–841.
[461]  Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Curr. Rev.?2004, 104, 2199–2238.
[462]  Sahr, T.; Ravanel, S.; Rebeille, F. Tetrahydrofolate biosynthesis and distribution in higher plants. Biochem. Soc. Trans.?2005, 33, 758–762, doi:10.1042/BST0330758.
[463]  Vasileuskaya, Z.; Oster, U.; Beck, C.F. Involvement of tetrapyrroles in inter-organellar signaling in plants and algae. Photosynth. Res.?2004, 82, 289–299, doi:10.1007/s11120-004-2160-x.
[464]  Kulikowska, E.; Kierdaszuk, B.; Shugar, D. Xanthine, xanthosine and its nucleotides: Solution structures of neutral and ionic forms, and relevance to substrate properties in various enzyme systems and metabolic pathways. Acta Biochim. Pol.?2004, 51, 493–531.
[465]  Lucock, M.; Yates, Z. Folic acid - vitamin and panacea or genetic time bomb? Nat. Rev. Genet.?2005, 6, 235–240, doi:10.1038/nrg1558.
[466]  Alvarez-Lario, B.; Macarron-Vicente, J. Uric acid and evolution. Rheumatology?2010, 49, 2010–2015, doi:10.1093/rheumatology/keq204.
[467]  Azmitia, E.C. Modern views on an ancient chemical: Serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res. Bull.?2001, 56, 413–424, doi:10.1016/S0361-9230(01)00614-1.
[468]  Cuvillier, O. Sphingosine in apoptosis signaling. Biochim. Biophys. Acta?2002, 1585, 153–162, doi:10.1016/S1388-1981(02)00336-0.
[469]  Miller, S.L. Production of amino acids under possible primitive earth conditions. Science?1953, 117, 528–529.
[470]  Denis, V.; Daignan-Fornier, B. Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet.?1998, 259, 246–255, doi:10.1007/s004380050810.
[471]  Boza, J.J.; Moennoz, D.; Bournot, C.E.; Blum, S.; Zbinden, I.; Finot, P.A.; Ballevre, O. Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells. Eur. J. Nutr.?2000, 39, 38–46, doi:10.1007/s003940050074.
[472]  Huang, M.; Graves, L.M. De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways. Cell. Mol. Life Sci.?2003, 60, 321–336, doi:10.1007/s000180300027.
[473]  Traut, T.W.; Jones, M.E. Uracil metabolism—UMP synthesis from orotic acid or uridine and conversion of uracil to beta-alanine: Enzymes and cDNAs. Prog. Nucleic Acid Res. Mol. Biol.?1996, 53, 1–78, doi:10.1016/S0079-6603(08)60142-7.
[474]  Stepansky, A.; Leustek, T. Histidine biosynthesis in plants. Amino Acids?2006, 30, 127–142, doi:10.1007/s00726-005-0247-0.
[475]  Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature?2008, 451, 293–296.
[476]  Navarro-Gonzalez, R.; McKay, C.P.; Mvondo, D.N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature?2001, 412, 61–64, doi:10.1038/35083537.
[477]  Hamilton, I.R.; Burris, R.H.; Wilson, P.W.; Wang, C.H. Pyruvate metabolism, carbon dioxide assimilation, and nitrogen fixation by an achromobacter species. J. Bacteriol.?1965, 89, 647–653.
[478]  Sobko, T.; Reinders, C.I.; Jansson, E.; Norin, E.; Midtvedt, T.; Lundberg, J.O. Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide?2005, 13, 272–278, doi:10.1016/j.niox.2005.08.002.
[479]  Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov.?2008, 7, 156–167, doi:10.1038/nrd2466.
[480]  Stuehr, D.J. Enzymes of the L-arginine to nitric oxide pathway. J. Nutr.?2004, 134, 2748–2751. discussion 2765S-2767S.
[481]  Nyffeler, P.T.; Liang, C.H.; Koeller, K.M.; Wong, C.H. The chemistry of amine-azide interconversion: Catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc.?2002, 124, 10773–10778, doi:10.1021/ja0264605.
[482]  Brandes, J.A.; Boctor, N.Z.; Cody, G.D.; Cooper, B.A.; Hazen, R.M.; Yoder, H.S., Jr. Abiotic nitrogen reduction on the early Earth. Nature?1998, 395, 365–367.
[483]  On this matter, the attractorepulsive effects of the primary electrogyre on the nitrogyre models ammonia, consistent with ideas regarding its formation on the early Earth.
[484]  Doherty, E.A.; Doudna, J.A. Ribozyme structures and mechanisms. Annu. Rev. Biophys. Biomol. Struct.?2001, 30, 457–475, doi:10.1146/annurev.biophys.30.1.457.
[485]  Lahav, N. Prebiotic co-evolution of self-replication and translation or RNA world? J. Theor. Biol.?1991, 151, 531–539, doi:10.1016/S0022-5193(05)80368-6.
[486]  Lilley, D.M. The ribosome functions as a ribozyme. Chembiolchem?2001, 2, 31–35, doi:10.1002/1439-7633(20010105)2:1<31::AID-CBIC31>3.0.CO;2-P.
[487]  Wolf, Y.I.; Koonin, E.V. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol.Direct?2007, 2, doi:10.1186/1745-6150-2-14.
[488]  Ma, W. The scenario on the origin of translation in the RNA world: In principle of replication parsimony. Biol.Direct?2010, 5, doi:10.1186/1745-6150-5-65.
[489]  Ibba, M.; Soll, D. Aminoacyl-tRNAs: Setting the limits of the genetic code. Genes Dev.?2004, 18, 731–738, doi:10.1101/gad.1187404.
[490]  Wong, J.T. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA?1975, 72, 1909–1912, doi:10.1073/pnas.72.5.1909.
[491]  Wong, J.T. Coevolution theory of the genetic code at age thirty. BioEssays?2005, 27, 416–425, doi:10.1002/bies.20208.
[492]  Easterwood, T.R.; Major, F.; Malhotra, A.; Harvey, S.C. Orientations of transfer RNA in the ribosomal A and P sites. Nucleic Acids Res.?1994, 22, 3779–3786, doi:10.1093/nar/22.18.3779.
[493]  Schmeing, T.M.; Moore, P.B.; Steitz, T.A. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA?2003, 9, 1345–1352, doi:10.1261/rna.5120503.
[494]  Tozzi, M.G.; Camici, M.; Mascia, L.; Sgarrella, F.; Ipata, P.L. Pentose phosphates in nucleoside interconversion and catabolism. FEBS J.?2006, 273, 1089–1101, doi:10.1111/j.1742-4658.2006.05155.x.
[495]  Wirtz, M.; Droux, M. Synthesis of the sulfur amino acids: Cysteine and methionine. Photosynth. Res.?2005, 86, 345–362, doi:10.1007/s11120-005-8810-9.
[496]  Recall that the electrogyre models the hydrogen cycle (3.1), the oxygyre models the oxygen and water cycles (3.2), the carbogyre models the carbon cycle (3.3), the phosphogyre models the phosphorus cycle (3.4), and the ribogyre and nitrogyre model the nitrogen cycle (3.5).
[497]  Kertesz, M.A. Riding the sulfur cycle—Metabolism of sulfonates and sulfate esters in Gram-negative bacteria. Fems Microbiol. Rev.?2000, 24, 135–175.
[498]  Farquhar, J.; Wu, N.P.; Canfield, D.E.; Oduro, H. Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Econ. Geol.?2010, 105, 509–533, doi:10.2113/gsecongeo.105.3.509.
[499]  Philippot, P.; van Zuilen, M.; Lepot, K.; Thomazo, C.; Farquhar, J.; van Kranendonk, M.J. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science?2007, 317, 1534–1537, doi:10.1126/science.1145861.
[500]  Turchyn, A.V.; Schrag, D.P. Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science?2004, 303, 2004–2007, doi:10.1126/science.1092296.
[501]  Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol.?2011, 62, 157–184, doi:10.1146/annurev-arplant-042110-103921.
[502]  Stipanuk, M.H. Metabolism of sulfur-containing amino acids. Annu. Rev. Nutr.?1986, 6, 179–209, doi:10.1146/annurev.nu.06.070186.001143.
[503]  Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr.?2006, 136, 1636–1640.
[504]  Chatterjee, N.K.; Kerwar, S.S.; Weissbach, H. Initiation of protein synthesis in HeLa cells. Proc. Natl. Acad. Sci. USA?1972, 69, 1375–1379, doi:10.1073/pnas.69.6.1375.
[505]  Han, D.X.; Wang, H.Y.; Ji, Z.L.; Hu, A.F.; Zhao, Y.F. Amino Acid Homochirality may be Linked to the Origin of Phosphate-Based Life. J. Mol. Evol.?2010, 70, 572–582, doi:10.1007/s00239-010-9353-z.
[506]  Tamura, K. Origin of amino acid homochirality: Relationship with the RNA world and origin of tRNA aminoacylation. Biosystems?2008, 92, 91–98, doi:10.1016/j.biosystems.2007.12.005.
[507]  Zaher, H.S.; Green, R. Fidelity at the molecular level: Lessons from protein synthesis. Cell?2009, 136, 746–762, doi:10.1016/j.cell.2009.01.036.
[508]  Blommaart, E.F.; Luiken, J.J.; Meijer, A.J. Autophagic proteolysis: Control and specificity. Histochem. J.?1997, 29, 365–385, doi:10.1023/A:1026486801018.
[509]  Hamel, F.G.; Fawcett, J.; Bennett, R.G.; Duckworth, W.C. Control of proteolysis: Hormones, nutrients, and the changing role of the proteasome. Curr. Opin. Clin. Metab. Care?2004, 7, 255–258.
[510]  Kadowaki, M.; Kanazawa, T. Amino acids as regulators of proteolysis. J. Nutr.?2003, 133, 2052–2056.
[511]  Knaggs, M.; Williams, M.; Goodfellow, J.M. Protein hydration, stability and unfolding. Biochem. Soc. Trans.?1995, 23, 711–715.
[512]  Harari-Steinberg, O.; Chamovitz, D.A. The COP9 signalosome: Mediating between kinase signaling and protein degradation. Curr. Protein Pept. Sci.?2004, 5, 185–189.
[513]  Fuchs, S.Y.; Fried, V.A.; Ronai, Z. Stress-activated kinases regulate protein stability. Oncogene?1998, 17, 1483–1490.
[514]  Buljan, M.; Bateman, A. The evolution of protein domain families. Biochem. Soc. Trans.?2009, 37, 751–755.
[515]  Caetano-Anolles, G.; Wang, M.; Caetano-Anolles, D.; Mittenthal, J.E. The origin, evolution and structure of the protein world. Biochem. J.?2009, 417, 621–637, doi:10.1042/BJ20082063.
[516]  Pal, C.; Papp, B.; Lercher, M.J. An integrated view of protein evolution. Nat. Rev. Genet.?2006, 7, 337–348, doi:10.1038/nrg1838.
[517]  Hausmann, C.D.; Ibba, M. Aminoacyl-tRNA synthetase complexes: Molecular multitasking revealed. FEMS Microbiol. Rev.?2008, 32, 705–721, doi:10.1111/j.1574-6976.2008.00119.x.
[518]  Lipman, R.S.; Hou, Y.M. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA?1998, 95, 13495–13500.
[519]  Errington, N.; Iqbalsyah, T.; Doig, A.J. Structure and stability of the alpha-helix: Lessons for design. Methods Mol. Biol.?2006, 340, 3–26.
[520]  Toniolo, C.; Benedetti, E. The polypeptide 310-helix. Trends Biochem. Sci.?1991, 16, 350–353, doi:10.1016/0968-0004(91)90142-I.
[521]  Riek, R.P.; Graham, R.M. The elusive pi-helix. J. Struct. Biol.?2011, 173, 153–160, doi:10.1016/j.jsb.2010.09.001.
[522]  Chou, K.C.; Pottle, M.; Nemethy, G.; Ueda, Y.; Scheraga, H.A. Structure of beta-sheets. Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J. Mol. Biol.?1982, 162, 89–112, doi:10.1016/0022-2836(82)90163-2.
[523]  Armen, R.; Alonso, D.O.; Daggett, V. The role of alpha-, 3(10)-, and pi-helix in helix→coil transitions. Protein Sci.?2003, 12, 1145–1157, doi:10.1110/ps.0240103.
[524]  Schutt, C.E.; Myslik, J.C.; Rozycki, M.D.; Goonesekere, N.C.; Lindberg, U. The structure of crystalline profilin-beta-actin. Nature?1993, 365, 810–816.
[525]  Nogales, E.; Whittaker, M.; Milligan, R.A.; Downing, K.H. High-resolution model of the microtubule. Cell?1999, 96, 79–88, doi:10.1016/S0092-8674(00)80961-7.
[526]  Strelkov, S.V.; Schumacher, J.; Burkhard, P.; Aebi, U.; Herrmann, H. Crystal structure of the human lamin A coil 2B dimer: Implications for the head-to-tail association of nuclear lamins. J. Mol. Biol.?2004, 343, 1067–1080, doi:10.1016/j.jmb.2004.08.093.
[527]  Bhattacharjee, A.; Bansal, M. Collagen structure: The Madras triple helix and the current scenario. IUBMB Life?2005, 57, 161–172, doi:10.1080/15216540500090710.
[528]  Wierzbicka-Patynowski, I.; Schwarzbauer, J.E. The ins and outs of fibronectin matrix assembly. J. Cell Sci.?2003, 116, 3269–3276, doi:10.1242/jcs.00670.
[529]  Leahy, D.J.; Aukhil, I.; Erickson, H.P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell?1996, 84, 155–164, doi:10.1016/S0092-8674(00)81002-8.
[530]  Beck, K.; Hunter, I.; Engel, J. Structure and function of laminin: Anatomy of a multidomain glycoprotein. FASEB J.?1990, 4, 148–160.
[531]  Ali, I.; Marenduzzo, D.; Yeomans, J.M. Polymer packaging and ejection in viral capsids: Shape matters. Phys. Rev. Lett.?2006, 96, doi:10.1103/PhysRevLett.96.208102.
[532]  Zampighi, G.A.; Fisher, R.S. Polyhedral protein cages encase synaptic vesicles and participate in their attachment to the active zone. J. Struct. Biol.?1997, 119, 347–359, doi:10.1006/jsbi.1997.3882.
[533]  Anfinsen, C.B. Studies on the reduction and re-formation of protein disulfide bonds. J. Biol. Chem.?1961, 236, 1361–1363.
[534]  Anfinsen, C.B. Principles that govern folding of protein chains. Science?1973, 181, 223–230.
[535]  Ptitsyn, O.B. A determinable but unresolved problem. FASEB J.?1996, 10, 3–4.
[536]  I have modeled that the aminonexus is composed of amino acids (ribogyre (3.5) and aminogyre (3.6)) that evolutionarily emerge from organic matter and oxides and are bathed in a water solution (oxygyre (3.2) and carbogyre (3.3)). Furthermore, the aminonexus is replete with electrons (electrogyre (3.1)) and frequently modified with phosphate groups (phosphogyre (3.4)).
[537]  Nordlund, P.; Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem.?2006, 75, 681–706, doi:10.1146/annurev.biochem.75.103004.142443.
[538]  Kennelly, P.J. Protein kinases and protein phosphatases in prokaryotes: A genomic perspective. FEMS Microbiol. Lett.?2002, 206, 1–8, doi:10.1111/j.1574-6968.2002.tb10978.x.
[539]  Taylor, S.S.; Kornev, A.P. Protein kinases: Evolution of dynamic regulatory proteins. Trends Biochem. Sci.?2011, 36, 65–77, doi:10.1016/j.tibs.2010.09.006.
[540]  Kennelly, P.J. Protein phosphatases—A phylogenetic perspective. Curr. Rev.?2001, 101, 2291–2312.
[541]  Kwapisz, M.; Beckouet, F.; Thuriaux, P. Early evolution of eukaryotic DNA-dependent RNA polymerases. Trends Genet.?2008, 24, 211–215, doi:10.1016/j.tig.2008.02.002.
[542]  Sonntag, K.C.; Darai, G. Evolution of viral DNA-dependent RNA polymerases. Virus Genes?1995, 11, 271–284, doi:10.1007/BF01728665.
[543]  Werner, F.; Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol.?2011, 9, 85–98, doi:10.1038/nrmicro2507.
[544]  Makeyev, E.V.; Grimes, J.M. RNA-dependent RNA polymerases of dsRNA bacteriophages. Virus Res.?2004, 101, 45–55, doi:10.1016/j.virusres.2003.12.005.
[545]  Sorrentino, S. The eight human “canonical” ribonucleases: Molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett.?2010, 584, 2194–2200, doi:10.1016/j.febslet.2010.04.018.
[546]  Danchin, A. A phylogenetic view of bacterial ribonucleases. Progress Mol. Biol. Transl. Sci.?2009, 85, 1–41, doi:10.1016/S0079-6603(08)00801-5.
[547]  Evans, C.J.; Aguilera, R.J. DNase II: Genes, enzymes and function. Gene?2003, 322, 1–15, doi:10.1016/j.gene.2003.08.022.
[548]  Pyle, A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys.?2008, 37, 317–336, doi:10.1146/annurev.biophys.37.032807.125908.
[549]  Tan, S.; Richmond, T.J. Eukaryotic transcription factors. Curr. Opin. Struct. Biol.?1998, 8, 41–48, doi:10.1016/S0959-440X(98)80008-0.
[550]  Reeve, J.N.; Bailey, K.A.; Li, W.T.; Marc, F.; Sandman, K.; Soares, D.J. Archaeal histones: Structures, stability and DNA binding. Biochem. Soc. Trans.?2004, 32, 227–230, doi:10.1042/BST0320227.
[551]  Johnson, L.N. The regulation of protein phosphorylation. Biochem. Soc. Trans.?2009, 37, 627–641, doi:10.1042/BST0370627.
[552]  Bayle, J.H.; Crabtree, G.R. Protein acetylation: More than chromatin modification to regulate transcription. Chem. Biol.?1997, 4, 885–888.
[553]  McIlhinney, R.A. The fats of life: The importance and function of protein acylation. Trends Biochem. Sci.?1990, 15, 387–391, doi:10.1016/0968-0004(90)90237-6.
[554]  Paik, W.K.; Paik, D.C.; Kim, S. Historical review: The field of protein methylation. Trends Biochem. Sci.?2007, 32, 146–152, doi:10.1016/j.tibs.2007.01.006.
[555]  Fang, S.; Weissman, A.M. A field guide to ubiquitylation. Cell. Mol. Life Sci.?2004, 61, 1546–1561.
[556]  Wilkinson, K.A.; Henley, J.M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J.?2010, 428, 133–145, doi:10.1042/BJ20100158.
[557]  Protein phosphorylation is modeled as thermodynamic relationships between the ribogyre (NTPs) and aminogyre; protein acetylation, acylation, and methylation are modeled as relationships between the carbogyre and aminogyre; and protein ubiquitylation and SUMOylation occur via aminogyre autoregulation.
[558]  Wendler, P.; Ciniawsky, S.; Kock, M.; Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta?2011. in press.
[559]  Blower, M.D.; Nachury, M.; Heald, R.; Weis, K. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell?2005, 121, 223–234, doi:10.1016/j.cell.2005.02.016.
[560]  Van Hooser, A.A.; Yuh, P.; Heald, R. The perichromosomal layer. Chromosoma?2005, 114, 377–388, doi:10.1007/s00412-005-0021-9.
[561]  Cole, C.N.; Scarcelli, J.J. Transport of messenger RNA from the nucleus to the cytoplasm. Curr. Opin. Cell. Biol.?2006, 18, 299–306, doi:10.1016/j.ceb.2006.04.006.
[562]  Maniatis, T.; Reed, R. An extensive network of coupling among gene expression machines. Nature?2002, 416, 499–506, doi:10.1038/416499a.
[563]  Azubel, M.; Wolf, S.G.; Sperling, J.; Sperling, R. Three-dimensional structure of the native spliceosome by cryo-electron microscopy. Mol. Cell?2004, 15, 833–839, doi:10.1016/j.molcel.2004.07.022.
[564]  Matera, A.G.; Shpargel, K.B. Pumping RNA: Nuclear bodybuilding along the RNP pipeline. Curr. Opin. Cell. Biol.?2006, 18, 317–324, doi:10.1016/j.ceb.2006.03.005.
[565]  Parker, R.; Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell?2007, 25, 635–646, doi:10.1016/j.molcel.2007.02.011.
[566]  Erickson, S.L.; Lykke-Andersen, J. Cytoplasmic mRNP granules at a glance. J. Cell Sci.?2011, 124, 293–297, doi:10.1242/jcs.072140.
[567]  Examples of these gyrapical RNA-protein complexes are the spindle ribonucleoprotein, perichromosomal sheath, nascent and nucleocytoplasmically transported mRNAs, spliceosome, Cajal bodies, and cytoplasmic P-bodies and stress granules.
[568]  Bowie, J.U. Solving the membrane protein folding problem. Nature?2005, 438, 581–589, doi:10.1038/nature04395.
[569]  Pohorille, A.; Schweighofer, K.; Wilson, M.A. The origin and early evolution of membrane channels. Astrobiology?2005, 5, 1–17, doi:10.1089/ast.2005.5.1.
[570]  Debler, E.W.; Ma, Y.; Seo, H.S.; Hsia, K.C.; Noriega, T.R.; Blobel, G.; Hoelz, A. A fence-like coat for the nuclear pore membrane. Mol. Cell?2008, 32, 815–826, doi:10.1016/j.molcel.2008.12.001.
[571]  Albrecht-Buehler, G. The iris diaphragm model of centriole and basal body formation. Cell Motil.Cytoskelet.?1990, 17, 197–213, doi:10.1002/cm.970170307.
[572]  Note that each of these aminons originate and evolve in response to changes in subsumed gyrosystems; this should remind the reader of gyraxioms that dictate interconnectivity of the gyromodel (GIV, GIV–1): Although these phenomena—polypeptide synthesis, protein complex structure and function, and membrane insertion—can be studied independently, they cannot be understood without losing information related to the processes that precede them evolutionarily, atomically, and metabolically.
[573]  Walsh, C. Antibiotics: Actions, Origins, Resistance; ASM Press: Washington, DC, USA, 2003; p. 335.
[574]  Yim, G.; Wang, H.H.; Davies, J. Antibiotics as signalling molecules. Philos. Trans. R. Soc. Lond. Ser. B?2007, 362, 1195–1200, doi:10.1098/rstb.2007.2044.
[575]  Kleinkauf, H.; von Dohren, H. A nonribosomal system of peptide biosynthesis. Eur. J. Biochem. FEBS?1996, 236, 335–351.
[576]  Von Dohren, H.; Dieckmann, R.; Pavela-Vrancic, M. The nonribosomal code. Chem. Biol.?1999, 6, R273–R279, doi:10.1016/S1074-5521(00)80014-9.
[577]  Caboche, S.; Leclere, V.; Pupin, M.; Kucherov, G.; Jacques, P. Diversity of monomers in nonribosomal peptides: Towards the prediction of origin and biological activity. J. Bacteriol.?2010, 192, 5143–5150, doi:10.1128/JB.00315-10.
[578]  French, G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents?2010, 36, S3–S7, doi:10.1016/S0924-8579(10)70003-0.
[579]  Shimojima, M. Biosynthesis and functions of the plant sulfolipid. Progress in Lipid Research.?2011, 50, 234–239, doi:10.1016/j.plipres.2011.02.003.
[580]  Vollmer, W.; Blanot, D.; de Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev.?2008, 32, 149–167, doi:10.1111/j.1574-6976.2007.00094.x.
[581]  Irvine, W.M. Chemistry between the stars. Planet. Rep.?1987, 7, 6–9.
[582]  Kolberg, M.; Strand, K.R.; Graff, P.; Andersson, K.K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta?1699, 1–34.
[583]  Stubbe, J. Ribonucleotide reductases: The link between an RNA and a DNA world? Curr. Opin. Struct. Biol.?2000, 10, 731–736, doi:10.1016/S0959-440X(00)00153-6.
[584]  Forterre, P. The two ages of the RNA world, and the transition to the DNA world: A story of viruses and cells. Biochimie?2005, 87, 793–803, doi:10.1016/j.biochi.2005.03.015.
[585]  Reichard, P. From RNA to DNA, why so many ribonucleotide reductases? Science?1993, 260, 1773–1777.
[586]  Watson, J.D.; Berry, A. DNA: The Secret of Life, 1st ed. ed.; Alfred A. Knopf: New York, NY, USA, 2003; p. 446.
[587]  Witkowski, J.A. The Inside Story: DNA to RNA to Protein; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 2005; p. 382.
[588]  Van Rompay, A.R.; Johansson, M.; Karlsson, A. Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol. Ther.?2000, 87, 189–198, doi:10.1016/S0163-7258(00)00048-6.
[589]  Chakrabarty, A.M. Nucleoside diphosphate kinase: Role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol. Microbiol.?1998, 28, 875–882, doi:10.1046/j.1365-2958.1998.00846.x.
[590]  Itzkovitz, S.; Tlusty, T.; Alon, U. Coding limits on the number of transcription factors. BMC Genomics?2006, 7, doi:10.1186/1471-2164-7-239.
[591]  Karin, M. Too many transcription factors: Positive and negative interactions. New Biol.?1990, 2, 126–131.
[592]  Georges, A.B.; Benayoun, B.A.; Caburet, S.; Veitia, R.A. Generic binding sites, generic DNA-binding domains: Where does specific promoter recognition come from? FASEB J.?2010, 24, 346–356, doi:10.1096/fj.09-142117.
[593]  Bergman, C.M.; Pfeiffer, B.D.; Rincon-Limas, D.E.; Hoskins, R.A.; Gnirke, A.; Mungall, C.J.; Wang, A.M.; Kronmiller, B.; Pacleb, J.; Park, S.; et al. Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol.?2002, 3, 1–20.
[594]  Cameron, R.A.; Chow, S.H.; Berney, K.; Chiu, T.Y.; Yuan, Q.A.; Kramer, A.; Helguero, A.; Ransick, A.; Yun, M.; Davidson, E.H. An evolutionary constraint: Strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules. Proc. Natl. Acad. Sci. USA?2005, 102, 11769–11774.
[595]  Carninci, P.; Sandelin, A.; Lenhard, B.; Katayama, S.; Shimokawa, K.; Ponjavic, J.; Semple, C.A.; Taylor, M.S.; Engstrom, P.G.; Frith, M.C.; et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet.?2006, 38, 626–635.
[596]  Castillo-Davis, C.I. The evolution of noncoding DNA: How much junk, how much func? Trends Genet.?2005, 21, 533–536, doi:10.1016/j.tig.2005.08.001.
[597]  Dillon, S.C.; Dorman, C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol.?2010, 8, 185–195, doi:10.1038/nrmicro2261.
[598]  Thatcher, T.H.; Gorovsky, M.A. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res.?1994, 22, 174–179.
[599]  Kato, M.; Onishi, Y.; Wada-Kiyama, Y.; Kiyama, R. Biochemical screening of stable dinucleosomes using DNA fragments from a dinucleosome DNA library. J. Mol. Biol.?2005, 350, 215–227, doi:10.1016/j.jmb.2005.04.075.
[600]  Sollner-Webb, B.; Felsenfeld, G. A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry?1975, 14, 2915–2920, doi:10.1021/bi00684a019.
[601]  Lucchesi, J.C. Dosage compensation in Drosophila and the “complex’ world of transcriptional regulation. BioEssays?1996, 18, 541–547, doi:10.1002/bies.950180705.
[602]  Winston, F.; Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet.?1992, 8, 387–391.
[603]  Liu, Z.; Karmarkar, V. Groucho/Tup1 family co-repressors in plant development. Trends Plant Sci.?2008, 13, 137–144, doi:10.1016/j.tplants.2007.12.005.
[604]  Melendy, T.; Li, R. Chromatin remodeling and initiation of DNA replication. Front. Biosci.?2001, 6, D1048–D1053, doi:10.2741/Melendy.
[605]  Friedberg, E.C. DNA damage and repair. Nature?2003, 421, 436–440, doi:10.1038/nature01408.
[606]  Coghlan, A.; Eichler, E.E.; Oliver, S.G.; Paterson, A.H.; Stein, L. Chromosome evolution in eukaryotes: A multi-kingdom perspective. Trends Genet.?2005, 21, 673–682, doi:10.1016/j.tig.2005.09.009.
[607]  Feschotte, C.; Pritham, E.J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet.?2007, 41, 331–368, doi:10.1146/annurev.genet.40.110405.090448.
[608]  McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA?1950, 36, 344–355, doi:10.1073/pnas.36.6.344.
[609]  Stankiewicz, P.; Lupski, J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet.?2002, 18, 74–82, doi:10.1016/S0168-9525(02)02592-1.
[610]  Zhao, J.; Bacolla, A.; Wang, G.; Vasquez, K.M. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci.?2010, 67, 43–62, doi:10.1007/s00018-009-0131-2.
[611]  Ghosh, A.; Bansal, M. A glossary of DNA structures from A to Z. Acta Crystallogr. Sect. D?2003, 59, 620–626, doi:10.1107/S0907444903003251.
[612]  Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature?1953, 171, 737–738, doi:10.1038/171737a0.
[613]  McGhee, J.D.; Nickol, J.M.; Felsenfeld, G.; Rau, D.C. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell?1983, 33, 831–841, doi:10.1016/0092-8674(83)90025-9.
[614]  Filipski, J.; Leblanc, J.; Youdale, T.; Sikorska, M.; Walker, P.R. Periodicity of DNA folding in higher order chromatin structures. EMBO J.?1990, 9, 1319–1327.
[615]  Swedlow, J.R.; Hirano, T. The making of the mitotic chromosome: Modern insights into classical questions. Mol. Cell?2003, 11, 557–569, doi:10.1016/S1097-2765(03)00103-5.
[616]  Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res.?2006, 117, 5–16, doi:10.1016/j.virusres.2006.01.010.
[617]  Long, M.; Betran, E.; Thornton, K.; Wang, W. The origin of new genes: Glimpses from the young and old. Nat. Rev. Genet.?2003, 4, 865–875.
[618]  Zhou, Q.; Wang, W. On the origin and evolution of new genes—A genomic and experimental perspective. J. Genet. Genomics?2008, 35, 639–648, doi:10.1016/S1673-8527(08)60085-5.
[619]  Hittinger, C.T.; Carroll, S.B. Gene duplication and the adaptive evolution of a classic genetic switch. Nature?2007, 449, 677–681, doi:10.1038/nature06151.
[620]  Ohno, S. Evolution by Gene Duplication; Springer-Verlag: Berlin, Germany and New York, NY, USA, 1970; p. 160.
[621]  Gilbert, W.; de Souza, S.J.; Long, M. Origin of genes. Proc. Natl. Acad. Sci. USA?1997, 94, 7698–7703, doi:10.1073/pnas.94.15.7698.
[622]  Swanson, W.J. Adaptive evolution of genes and gene families. Curr. Opin. Genet. Dev.?2003, 13, 617–622, doi:10.1016/j.gde.2003.10.007.
[623]  Rodriguez-Trelles, F.; Tarrio, R.; Ayala, F.J. Origins and evolution of spliceosomal introns. Annu. Rev. Genet.?2006, 40, 47–76, doi:10.1146/annurev.genet.40.110405.090625.
[624]  Catania, F.; Lynch, M. Where do introns come from? PLoS Biol.?2008, 6, doi:10.1371/journal.pbio.0060283.
[625]  Brisson, D. The directed mutation controversy in an evolutionary context. Crit. Rev. Microbiol.?2003, 29, 25–35, doi:10.1080/713610403.
[626]  Cairns, J.; Overbaugh, J.; Miller, S. The origin of mutants. Nature?1988, 335, 142–145, doi:10.1038/335142a0.
[627]  Lenski, R.E.; Mittler, J.E. The directed mutation controversy and neo-Darwinism. Science?1993, 259, 188–194.
[628]  Cheng, J.; Kapranov, P.; Drenkow, J.; Dike, S.; Brubaker, S.; Patel, S.; Long, J.; Stern, D.; Tammana, H.; Helt, G.; et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science?2005, 308, 1149–1154.
[629]  Huertas, P.; Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell?2003, 12, 711–721, doi:10.1016/j.molcel.2003.08.010.
[630]  Nowacki, M.; Vijayan, V.; Zhou, Y.; Schotanus, K.; Doak, T.G.; Landweber, L.F. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature?2008, 451, 153–158.
[631]  Storici, F.; Bebenek, K.; Kunkel, T.A.; Gordenin, D.A.; Resnick, M.A. RNA-templated DNA repair. Nature?2007, 447, 338–341, doi:10.1038/nature05720.
[632]  Jenkins, F.J.; Roizman, B. Site-specific mutagenesis of large DNA viral genomes. BioEssays?1986, 5, 244–247, doi:10.1002/bies.950050603.
[633]  Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants. Nat. Rev. Genet.?2008, 9, 267–276.
[634]  Dunning Hotopp, J.C.; Clark, M.E.; Oliveira, D.C.; Foster, J.M.; Fischer, P.; Munoz Torres, M.C.; Giebel, J.D.; Kumar, N.; Ishmael, N.; Wang, S.; et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science?2007, 317, 1753–1756.
[635]  Timmis, J.N.; Ayliffe, M.A.; Huang, C.Y.; Martin, W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet.?2004, 5, 123–135.
[636]  Bergthorsson, U.; Adams, K.L.; Thomason, B.; Palmer, J.D. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature?2003, 424, 197–201, doi:10.1038/nature01743.
[637]  Mathews, C.K. DNA precursor metabolism and genomic stability. FASEB J.?2006, 20, 1300–1314, doi:10.1096/fj.06-5730rev.
[638]  Niida, H.; Shimada, M.; Murakami, H.; Nakanishi, M. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci.?2010, 101, 2505–2509, doi:10.1111/j.1349-7006.2010.01719.x.
[639]  Hakansson, P.; Hofer, A.; Thelander, L. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J. Biol. Chem.?2006, 281, 7834–7841.
[640]  Chabes, A.; Stillman, B. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA?2007, 104, 1183–1188, doi:10.1073/pnas.0610585104.
[641]  Harper, J.W.; Elledge, S.J. The DNA damage response: Ten years after. Mol. Cell?2007, 28, 739–745, doi:10.1016/j.molcel.2007.11.015.
[642]  Zou, L.; Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science?2003, 300, 1542–1548, doi:10.1126/science.1083430.
[643]  El-Hani, C.N. Between the cross and the sword: The crisis of the gene concept. Genet. Mol. Biol.?2007, 30, 297–307, doi:10.1590/S1415-47572007000300001.
[644]  Tautz, D. Redundancies, development and the flow of information. BioEssays?1992, 14, 263–266, doi:10.1002/bies.950140410.
[645]  Keller, E.F. The century beyond the gene. J. Biosci.?2005, 30, 3–10, doi:10.1007/BF02705144.
[646]  Biro, J.C. Seven fundamental, unsolved questions in molecular biology. Cooperative storage and bi-directional transfer of biological information by nucleic acids and proteins: An alternative to “central dogma”. Med. Hypotheses?2004, 63, 951–962, doi:10.1016/j.mehy.2004.06.024.
[647]  Falk, R. The rise and fall of dominance. Biol. Philos.?2001, 16, 285–323, doi:10.1023/A:1010611605295.
[648]  Ubeda, F. Why Mendelian segregation? Biochem. Soc. Trans.?2006, 34, 566–568, doi:10.1042/BST0340566.
[649]  Ayala, F.J. Darwin’s greatest discovery: Design without designer. Proc. Natl. Acad. Sci. USA?2007, 104, 8567–8573, doi:10.1073/pnas.0701072104.
[650]  Dawkins, R. The Selfish Gene, 30th Anniversary ed. ed.; Oxford University Press: Oxford, UK and New York, NY, USA, 2006; p. 360.
[651]  Lombard, D.B.; Chua, K.F.; Mostoslavsky, R.; Franco, S.; Gostissa, M.; Alt, F.W. DNA repair, genome stability, and aging. Cell?2005, 120, 497–512, doi:10.1016/j.cell.2005.01.028.
[652]  Kolodner, R.D.; Putnam, C.D.; Myung, K. Maintenance of genome stability in Saccharomyces cerevisiae. Science?2002, 297, 552–557, doi:10.1126/science.1075277.
[653]  Orr, H.A. The genetic theory of adaptation: A brief history. Nat. Rev. Genet.?2005, 6, 119–127, doi:10.1038/nrg1523.
[654]  Visscher, P.M.; Hill, W.G.; Wray, N.R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet.?2008, 9, 255–266.
[655]  Cobb, A.B. Cell Theory; Chelsea House: New York, NY, USA, 2011; p. 104.
[656]  Cano, R.J.; Borucki, M.K. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science?1995, 268, 1060–1064.
[657]  Sargent, M.G. Control of membrane protein synthesis in Bacillus subtilis. Biochim. Biophys. Acta?1975, 406, 564–574, doi:10.1016/0005-2736(75)90033-4.
[658]  Cadenas, E.; Garland, P.B. Synthesis of cytoplasmic membrane during growth and division of Escherichia coli. Dispersive behaviour of respiratory nitrate reductase. Biochem. J.?1979, 184, 45–50.
[659]  Diffley, J.F. Eukaryotic DNA replication. Curr. Opin. Cell. Biol.?1994, 6, 368–372, doi:10.1016/0955-0674(94)90028-0.
[660]  Leipe, D.D.; Aravind, L.; Koonin, E.V. Did DNA replication evolve twice independently? Nucleic Acids Res.?1999, 27, 3389–3401, doi:10.1093/nar/27.17.3389.
[661]  Harry, E.; Monahan, L.; Thompson, L. Bacterial cell division: The mechanism and its precison. Int. Rev. Cytol.?2006, 253, 27–94, doi:10.1016/S0074-7696(06)53002-5.
[662]  Uhlmann, F. Chromosome cohesion and segregation in mitosis and meiosis. Curr. Opin. Cell. Biol.?2001, 13, 754–761, doi:10.1016/S0955-0674(00)00279-9.
[663]  Woese, C.R.; Magrum, L.J.; Fox, G.E. Archaebacteria. J. Mol. Evol.?1978, 11, 245–251, doi:10.1007/BF01734485.
[664]  Galtier, N.; Gouy, M. Molecular phylogeny of Eubacteria: A new multiple tree analysis method applied to 15 sequence data sets questions the monophyly of gram-positive bacteria. Res. Microbiol.?1994, 145, 531–541.
[665]  Pace, N.R. Time for a change. Nature?2006, 441, 289–289, doi:10.1038/441289a.
[666]  McBride, H.M.; Neuspiel, M.; Wasiak, S. Mitochondria: More than just a powerhouse. Curr. Biol.?2006, 16, R551–560, doi:10.1016/j.cub.2006.06.054.
[667]  Kuroiwa, T.; Kuroiwa, H.; Sakai, A.; Takahashi, H.; Toda, K.; Itoh, R. The division apparatus of plastids and mitochondria. Int. Rev. Cytol.?1998, 181, 1–41, doi:10.1016/S0074-7696(08)60415-5.
[668]  Cooper, S. On G0 and cell cycle controls. BioEssays?1987, 7, 220–223, doi:10.1002/bies.950070507.
[669]  Coelho, S.M.; Peters, A.F.; Charrier, B.; Roze, D.; Destombe, C.; Valero, M.; Cock, J.M. Complex life cycles of multicellular eukaryotes: New approaches based on the use of model organisms. Gene?2007, 406, 152–170, doi:10.1016/j.gene.2007.07.025.
[670]  Martin, W.F.; Mu?ller, M. Origin of Mitochondria and Hydrogenosomes; Springer: New York, NY, USA, 2007.
[671]  Yoon, H.S.; Hackett, J.D.; Pinto, G.; Bhattacharya, D. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA?2002, 99, 15507–15512, doi:10.1073/pnas.242379899.
[672]  Mahler, H.R.; Raff, R.A. Evolutionary origin of mitochondrion—non-symbiotic model. Int. Rev. Cytol.?1975, 43, 1–124, doi:10.1016/S0074-7696(08)60067-4.
[673]  Sagan, L. On origin of mitosing cells. J. Theor. Biol.?1967, 14, 225–274, doi:10.1016/0022-5193(67)90079-3.
[674]  Cotton, D.W. Intimate relations: The serial endosymbiotic theory of the origin of eukaryotes. J. Pathol.?1993, 169, 189–190, doi:10.1002/path.1711690203.
[675]  Martin, W.; Muller, M. The hydrogen hypothesis for the first eukaryote. Nature?1998, 392, 37–41, doi:10.1038/32096.
[676]  Torres, E.M.; Williams, B.R.; Amon, A. Aneuploidy: Cells losing their balance. Genetics?2008, 179, 737–746, doi:10.1534/genetics.108.090878.
[677]  Chen, X.J.; Clark-Walker, G.D. The petite mutation in yeasts: 50 years on. Int. Rev. Cytol.?2000, 194, 197–238.
[678]  Lindemann, S.; Gawaz, M. The active platelet: Translation and protein synthesis in an anucleate cell. Semin. Thromb. Hemost.?2007, 33, 144–150, doi:10.1055/s-2007-969027.
[679]  Palis, J.; Segel, G.B. Developmental biology of erythropoiesis. Blood Rev.?1998, 12, 106–114, doi:10.1016/S0268-960X(98)90022-4.
[680]  Nagata, S. DNA degradation in development and programmed cell death. Annu. Rev. Immunol.?2005, 23, 853–875, doi:10.1146/annurev.immunol.23.021704.115811.
[681]  Counis, M.F.; Chaudun, E.; Arruti, C.; Oliver, L.; Sanwal, M.; Courtois, Y.; Torriglia, A. Analysis of nuclear degradation during lens cell differentiation. Cell Death Differ.?1998, 5, 251–261.
[682]  Blagosklonny, M.V.; Pardee, A.B. The restriction point of the cell cycle. Cell Cycle?2002, 1, 103–110.
[683]  Donjerkovic, D.; Scott, D.W. Regulation of the G1 phase of the mammalian cell cycle. Cell Res.?2000, 10, 1–16, doi:10.1038/sj.cr.7290031.
[684]  Laskey, R.A.; Fairman, M.P.; Blow, J.J. S phase of the cell cycle. Science?1989, 246, 609–614.
[685]  Cuddihy, A.R.; O’Connell, M.J. Cell-cycle responses to DNA damage in G2. Int. Rev. Cytol.?2003, 222, 99–140, doi:10.1016/S0074-7696(02)22013-6.
[686]  Gorbsky, G.J. Cell cycle checkpoints: Arresting progress in mitosis. BioEssays?1997, 19, 193–197, doi:10.1002/bies.950190303.
[687]  Chang, F.; Nurse, P. Finishing the cell cycle: Control of mitosis and cytokinesis in fission yeast. Trends Genet.?1993, 9, 333–335, doi:10.1016/0168-9525(93)90022-A.
[688]  Rabinowitz, M. Studies on the cytology and early embryology of the egg of Drosophila melanogaster. J. Morphol.?1941, 69, 1–49, doi:10.1002/jmor.1050690102.
[689]  Edgar, B.A.; O’Farrell, P.H. Genetic control of cell division patterns in the Drosophila embryo. Cell?1989, 57, 177–187, doi:10.1016/0092-8674(89)90183-9.
[690]  Lloyd, D.; Poole, R.K.; Edwards, S.W. The Cell Division Cycle: Temporal Organization and Control of Cellular Growth and Reproduction; Academic Press: New York, NY, USA, 1982; p. 523.
[691]  Nasmyth, K. Evolution of the cell-cycle. Philos. Trans. R. Soc. Lond. Ser. B?1995, 349, 271–281, doi:10.1098/rstb.1995.0113.
[692]  Haeckel, E. Art Forms in Nature; Dover Publications: New York, NY, USA, 1974.
[693]  Biggs, D.S. 3D deconvolution microscopy. Curr. Protoc. Cytom.?2010. Chapter 12, 12.19:1–12.19:20.
[694]  Diaspro, A.; Chirico, G.; Collini, M. Two-photon fluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys.?2005, 38, 97–166, doi:10.1017/S0033583505004129.
[695]  Horwitz, R. Cell biology as the centuries change—About as good as it gets. J. Cell Sci.?2000, 113, 906–908.
[696]  Moon, J.; Hake, S. How a leaf gets its shape. Curr. Opin. Plant Biol.?2011, 14, 24–30, doi:10.1016/j.pbi.2010.08.012.
[697]  Stolz, J.F.; Franks, J. Flat laminated microbial mat communities. Earth Sci. Rev.?2009, 96, 163–172, doi:10.1016/j.earscirev.2008.10.004.
[698]  Jelsbak, L.; Sogaard-Andersen, L. Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus. J. Microbiol. Methods?2003, 55, 829–839, doi:10.1016/j.mimet.2003.08.007.
[699]  Tice, M.M.; Lowe, D.R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature?2004, 431, 549–552, doi:10.1038/nature02888.
[700]  Lopez-Garcia, P.; Moreira, D.; Douzery, E.; Forterre, P.; van Zuilen, M.; Claeys, P.; Prieur, D. Ancient fossil record and early evolution (ca. 3.8 to 0.5 Ga). Earth Moon Planets?2006, 98, 247–290, doi:10.1007/s11038-006-9091-9.
[701]  Thery, M.; Bornens, M. Cell shape and cell division. Curr. Opin. Cell. Biol.?2006, 18, 648–657, doi:10.1016/j.ceb.2006.10.001.
[702]  Cabeen, M.T.; Jacobs-Wagner, C. Bacterial cell shape. Nat. Rev. Microbiol.?2005, 3, 601–610, doi:10.1038/nrmicro1205.
[703]  Pajerowski, J.D.; Dahl, K.N.; Zhong, F.L.; Sammak, P.J.; Discher, D.E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. USA?2007, 104, 15619–15624.
[704]  Guo, X.; Goessl, E.; Jin, G.; Collie-Duguid, E.S.; Cassidy, J.; Wang, W.; O’Brien, V. Cell cycle perturbation and acquired 5-fluorouracil chemoresistance. Anticancer Res.?2008, 28, 9–14.
[705]  Taraschi, T.F.; Parashar, A.; Hooks, M.; Rubin, H. Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum. Science?1986, 232, 102–104.
[706]  Powell, C.D.; Quain, D.E.; Smart, K.A. Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology?2003, 149, 3129–3137, doi:10.1099/mic.0.25940-0.
[707]  For example, the yeast bud scar, an end result of cell division, is a near-perfect circle of chitin on the cell surface; please note how the bud scar mirrors the craters on celestial surfaces (3.2).
[708]  Williams, G.C. Pleiotropy, natural selection and the evolution of senescence. Evolution?1957, 11, 398–411, doi:10.2307/2406060.
[709]  Lane, N. Power, Sex, Suicide: Mitochondria and the Meaning of Life; Oxford University Press: Oxford, UK and New York, NY, USA, 2005; p. 354.
[710]  Clark, W.R. A Means to an End: The Biological Basis of Aging and Death; Oxford University Press: New York, NY, USA, 1999; p. 234.
[711]  Hay, M.E.; Rasher, D.B. Coral reefs in crisis: Reversing the biotic death spiral. F1000 Biol. Rep.?2010, 2, doi:10.3410/B2-71.
[712]  Vesteg, M.; Krajcovic, J. On the origin of meiosis and sex. Riv. Biol.?2007, 100, 147–161.
[713]  Bernstein, H.; Byerly, H.C.; Hopf, F.A.; Michod, R.E. Origin of sex. J. Theor. Biol.?1984, 110, 323–351, doi:10.1016/S0022-5193(84)80178-2.
[714]  Kondrashov, A.S. The asexual ploidy cycle and the origin of sex. Nature?1994, 370, 213–216, doi:10.1038/370213a0.
[715]  Otto, S.P.; Mable, B.K. The evolution of life cycles with haploid and diploid phases. BioEssays?1998, 20, 453–462, doi:10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N.
[716]  Rodrigues, P.; Limback, D.; McGinnis, L.K.; Plancha, C.E.; Albertini, D.F. Oogenesis: Prospects and challenges for the future. J. Cell. Physiol.?2008, 216, 355–365, doi:10.1002/jcp.21473.
[717]  Verlhac, M.-H.; Villeneuve, A. Oogenesis: The Universal Process; Wiley: Hoboken, NJ, USA, 2010.
[718]  Moore, I.T.; Lerner, J.P.; Lerner, D.T.; Mason, R.T. Relationships between annual cycles of testosterone, corticosterone, and body condition in male red-spotted garter snakes, Thamnophis sirtalis concinnus. Physiol. Biochem. Zool.?2000, 73, 307–312, doi:10.1086/316748.
[719]  Tricas, T.C.; Maruska, K.P.; Rasmussen, L.E. Annual cycles of steroid hormone production, gonad development, and reproductive behavior in the Atlantic stingray. Gen. Comp. Endocrinol.?2000, 118, 209–225, doi:10.1006/gcen.2000.7466.
[720]  Hines, G.A.; Watts, S.A.; Sower, S.A.; Walker, C.W. Sex steroid levels in the testes, ovaries, and pyloric caeca during gametogenesis in the sea star Asterias vulgaris. Gen. Comp. Endocrinol.?1992, 87, 451–460, doi:10.1016/0016-6480(92)90053-M.
[721]  Irianni, F.; Hodgen, G.D. Mechanism of ovulation. Endocrinol. Metab. Clin. N. Am.?1992, 21, 19–38.
[722]  Chabbert Buffet, N.; Djakoure, C.; Maitre, S.C.; Bouchard, P. Regulation of the human menstrual cycle. Front. Neuroendocrinol.?1998, 19, 151–186, doi:10.1006/frne.1998.0167.
[723]  These cycles are nested (androgens are modeled by the carbogyre (3.3) and both lutenizing hormone and follicle-stimulating hormone are modeled by the aminogyre (3.5)) within the dip- and hapcellulogyre.
[724]  Mayr, E. Weismann and evolution. J. Hist. Biol.?1985, 18, 295–329, doi:10.1007/BF00138928.
[725]  Gregory, T.R. The Evolution of the Genome; Elsevier Academic: Burlington, MA, USA, 2005; p. 740.
[726]  Cavalier-Smith, T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci.?1978, 34, 247–278.
[727]  Ozbek, S.; Balasubramanian, P.G.; Chiquet-Ehrismann, R.; Tucker, R.P.; Adams, J.C. The evolution of extracellular matrix. Mol. Biol. Cell?2010, 21, 4300–4305, doi:10.1091/mbc.E10-03-0251.
[728]  Huxley-Jones, J.; Pinney, J.W.; Archer, J.; Robertson, D.L.; Boot-Handford, R.P. Back to basics—How the evolution of the extracellular matrix underpinned vertebrate evolution. Int. J. Exp. Pathol.?2009, 90, 95–100, doi:10.1111/j.1365-2613.2008.00637.x.
[729]  Bereiter-Hahn, J.; Matoltsy, A.G.; Richards, K.S. Biology of the Integument; Springer-Verlag: Berlin, Germany and New York, NY, USA, 1984.
[730]  Gorb, S. Functional Surfaces in Biology; Springer: Dordrecht, The Netherlands, 2009; p. 678.
[731]  Findlay, G.H.; Harris, W.F. The topology of hair streams and whorls in man, with an observation on their relationship to epidermal ridge patterns. Am. J. Phys. Anthropol.?1977, 46, 427–437, doi:10.1002/ajpa.1330460308.
[732]  Williams, A. Spiral growth of the laminar shell of the brachiopod Crania. Calcif. Tissue Res.?1970, 6, 11–19, doi:10.1007/BF02196180.
[733]  Loza-Correa, M.; Gomez-Valero, L.; Buchrieser, C. Circadian clock proteins in prokaryotes: Hidden rhythms? Front. Microbiol.?2010, 1, doi:10.3389/fmicb.2010.00130.
[734]  Panda, S.; Hogenesch, J.B.; Kay, S.A. Circadian rhythms from flies to human. Nature?2002, 417, 329–335, doi:10.1038/417329a.
[735]  Park, D.H.; Somers, D.E.; Kim, Y.S.; Choy, Y.H.; Lim, H.K.; Soh, M.S.; Kim, H.J.; Kay, S.A.; Nam, H.G. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science?1999, 285, 1579–1582, doi:10.1126/science.285.5433.1579.
[736]  Rothenfluh, A.; Abodeely, M.; Price, J.L.; Young, M.W. Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics?2000, 156, 665–675.
[737]  Cyran, S.A.; Buchsbaum, A.M.; Reddy, K.L.; Lin, M.C.; Glossop, N.R.; Hardin, P.E.; Young, M.W.; Storti, R.V.; Blau, J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell?2003, 112, 329–341, doi:10.1016/S0092-8674(03)00074-6.
[738]  Gonze, D.; Leloup, J.C.; Goldbeter, A. Theoretical models for circadian rhythms in Neurospora and Drosophila. Comptes Rendus Acad. Sci. Ser. III?2000, 323, 57–67.
[739]  Yang, Q.; Pando, B.F.; Dong, G.; Golden, S.S.; van Oudenaarden, A. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science?2010, 327, 1522–1526.
[740]  Slavov, N.; Botstein, D. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol. Biol. Cell?2011, 22, 1997–2009, doi:10.1091/mbc.E11-02-0132.
[741]  Karsenti, E. Self-organization in cell biology: A brief history. Nat. Rev. Mol. Cell Biol.?2008, 9, 255–262, doi:10.1038/nrm2357.
[742]  Sapp, J. Microbial Phylogeny and Evolution: Concepts and Controversies; Oxford University Press: New York, NY, USA, 2005; p. 362.
[743]  Franc, N.C. Phagocytosis of apoptotic cells in mammals, caenorhabditis elegans and Drosophila melanogaster: Molecular mechanisms and physiological consequences. Front. Biosci.?2002, 7, d1298–1313, doi:10.2741/franc.
[744]  Soldati, T.; Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol.?2006, 7, 897–908, doi:10.1038/nrm2060.
[745]  Black, S. A theory on the origin of life. Adv. Enzymol. Relat. Areas Mol. Biol.?1973, 38, 193–234.
[746]  Wolkenhauer, O.; Hofmeyr, J.H.S. A contribution towards a theory of living cells. At-Automatisierungstechnik?2008, 56, 225–232, doi:10.1524/auto.2008.0707.
[747]  Olson, C.B. A theory of the origin of life. Orig. Life Evol. Biosph.?1981, 11, 353–368, doi:10.1007/BF00931490.
[748]  Lucido, G. Life out of magma: A new theory for the origin of life. Nuovo Cim. Della Soc. Ital. Fis. D?1998, 20, 2575–2591.
[749]  Snooks, G.D. The origin of life on earth: A new general dynamic theory. Space Life Sci.?2005, 36, 226–234.
[750]  Martin, W.; Russell, M.J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. Ser. B?2003, 358, 59–83, doi:10.1098/rstb.2002.1183.
[751]  Kennedy, D. 125. Science?2005, 309, 15.
[752]  Kennedy, D.; Norman, C. What don’t we know? Science?2005, 309, doi:10.1126/science.309.5731.75.
[753]  Beyond the standard model. Eff. Field Theor. Flavor Phys.?2004, 203, 157–166.
[754]  Gold, T. The Deep Hot Biosphere; Copernicus: New York, NY, USA, 1999; p. 235.
[755]  Asimov, I. Fact and Fancy, 1st ed. ed.; Doubleday: Garden City, NY, USA, 1962; p. 264.
[756]  Blackburn, G.M.; Bowler, M.W.; Cliff, M.J.; Waltho, J.P. Why did Nature select phosphate for its dominant roles in biology? New J. Chem.?2010, 34, 784–794, doi:10.1039/b9nj00718k.
[757]  Lahav, N.; Nir, S.; Elitzur, A.C. The emergence of life on Earth. Progress Biophys. Mol. Biol.?2001, 75, 75–120, doi:10.1016/S0079-6107(01)00003-7.
[758]  Jukes, T.H. Possible evolutionary steps in the genetic code. Biochem. Biophys. Res. Commun.?1982, 107, 225–228, doi:10.1016/0006-291X(82)91692-8.
[759]  Osawa, S. Evolution of the Genetic Code; Oxford University Press: Oxford: New York, NY, USA, 1995; p. 205.
[760]  Goldman, A.D.; Samudrala, R.; Baross, J.A. The evolution and functional repertoire of translation proteins following the origin of life. Biol. Direct?2010, 5, doi:10.1186/1745-6150-5-15.
[761]  Central dogma reversed. Nature?1970, 226, 1198–1199, doi:10.1038/2261198a0.
[762]  Wag the dogma. Nat. Genet.?2002, 30, 343–344.
[763]  Chaisson, E.J. The cosmic environment for the growth of complexity. Biol. Syst.?1998, 46, 13–19.
[764]  Ball, P. Physics: Quantum all the way. Nature?2008, 453, 22–25, doi:10.1038/453022a.
[765]  Waldrop, M.M. Complexity: The Emerging Science at the Edge of Order and Chaos; Simon & Schuster: New York, NY, USA, 1992; p. 380.
[766]  Lewin, R. Complexity: Life at the Edge of Chaos, 2nd ed. ed.; University of Chicago Press: Chicago, IL, USA, 1999; p. 234.
[767]  Ellis, N.C.; Larsen-Freeman, D. Research Club in Language Learning (Ann Arbor Mich.). In Language as a Complex Adaptive System; Wiley-Blackwell: Chichester, West Sussex, UK and Malden, MA, USA, 2009; p. 275.
[768]  Armstrong, D.M. What Is a Law of Nature?; Cambridge University Press: Cambridge Cambridgeshire, MA and New York, NY, USA, 1983; p. 180.
[769]  Lange, M. Laws and Lawmakers: Science, Metaphysics, and the Laws of Nature; Oxford University Press: Oxford, UK and New York, NY, USA, 2009; p. 257.
[770]  Morowitz, H.J. Energy Flow in Biology; Biological Organization as a Problem in Thermal Physics; Academic Press: New York, NY, USA, 1968; p. 179.
[771]  Ferris, J.P.; Hill, A.R., Jr.; Liu, R.; Orgel, L.E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature?1996, 381, 59–61.
[772]  Bohr, N.; Rosenfeld, L. Collected Works; North-Holland Publishing Co.: Amsterdam, Holland, 1972.
[773]  Sciama, D.W. The Unity of the Universe, 1st ed. ed.; Doubleday: Garden City, NY, USA, 1959; p. 228.
[774]  Weizs?cker, C.F. The Unity of Nature; Farrar Straus Giroux: New York, NY, USA, 1980; p. 406.
[775]  Weinberg, S. Dreams of a Final Theory, 1st Vintage Books ed. ed.; Vintage Books: New York, NY, USA, 1994; p. 340.
[776]  Prigogine, I.; Stengers, I. The End of Certainty: Time, Chaos, and the New Laws of Nature, 1st Free Press ed. ed.; Free Press: New York, NY, USA, 1997; p. 228.
[777]  Wallace, D.F. Everything and More: A Compact History of Infinity, 1st ed. ed.; Atlas Book: New York, NY, USA, 2003; p. 319.
[778]  Rucker, R. Infinity and the Mind: The Science and Philosophy of the Infinite; Princeton University Press: Princeton, NJ, USA, 1995; p. 342.
[779]  Blum, H.F. Time’s Arrow and Evolution, 2nd ed. ed.; Harper: New York, NY, USA, 1962; p. 220.
[780]  Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci.?2011, 4, 698–702, doi:10.1038/ngeo1238.
[781]  Eddington, A.S. The Nature of the Physical World; University Press: Cambridge, UK, 1928; p. 361.
[782]  Williams, G.C. Adaptation and Natural Selection; a Critique of Some Current Evolutionary Thought; Princeton University Press: Princeton, NJ, USA, 1966; p. 307.
[783]  Cannon, W.B. The Wisdom of the Body; W.W. Norton & Company: New York, NY, USA, 1939; p. 333.
[784]  Muller, G.B.; Wagner, G.P. Novelty in evolution—Restructuring the concept. Annu. Rev. Ecol. Syst.?1991, 22, 229–256.
[785]  Darwin, C. The Origin of Species: Complete and Fully Illustrated; Gramercy Books: New York, NY, USA, 1979; p. 460.
[786]  Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: New York, NY, USA, 1996; p. 212.
[787]  Gould, S.J.; Eldredge, N. Punctuated equilibrium comes of age. Nature?1993, 366, 223–227, doi:10.1038/366223a0.
[788]  Henderson, L.J. The Fitness of the Environment; an Inquiry into the Biological Significance of the Properties of Matter; P. Smith: Gloucester, MA, USA, 1970; p. 317.
[789]  Vernadsky, V.I. The Biosphere; Copernicus: New York, NY, USA, 1998; p. 192.
[790]  Cleland, C.E.; Chyba, C.F. Defining ‘life’. Orig. Life Evol. Biosph.?2002, 32, 387–393, doi:10.1023/A:1020503324273.
[791]  Des Marais, D.J.; Walter, M.R. Astrobiology: Exploring the origins, evolution, and distribution of life in the Universe. Annu. Rev. Ecol. Syst.?1999, 30, 397–420, doi:10.1146/annurev.ecolsys.30.1.397.
[792]  Javaux, E.J.; Dehant, V. Habitability: From stars to cells. Astron. Astrophys. Rev.?2010, 18, 383–416, doi:10.1007/s00159-010-0030-4.
[793]  Horneck, G. Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: A review. Planet. Space Sci.?1995, 43, 189–217, doi:10.1016/0032-0633(94)00190-3.
[794]  Monod, J. Chance and Necessity; an Essay on the Natural Philosophy of Modern Biology, 1st American ed. ed.; Knopf: New York, NY, USA, 1971; p. 198.
[795]  Aristotle; Lawson-Tancred, H. Metaphysics; Penguin Books: London, UK and New York, NY, USA, 1998; p. 459.
[796]  Bachelard, G. The Formation of the Scientific Mind: A Contribution to a Psychoanalysis of Objective Knowledge; Clinamen Press Ltd.: Manchester, UK, 2006; p. 266.
[797]  Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962; p. 172.
[798]  Strohman, R.C. The coming Kuhnian revolution in biology. Nat. Biotechnol.?1997, 15, 194–200, doi:10.1038/nbt0397-194.
[799]  Stent, G.S. American Museum of Natural History. In The Coming of the Golden Age; a View of the End of Progress, 1st ed. ed.; Published for the American Museum of Natural History by the Natural History Press: Garden City, NY, USA, 1969; p. 146.
[800]  Horgan, J. The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age; Abacus: London, UK, 1998; p. 324.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133