全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2012 

Chromosome Replication in Escherichia coli: Life on the Scales

DOI: 10.3390/life2040286

Keywords: DNA replication, cell division, growth rate control, ion condensation, water, evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.

References

[1]  Kauffman, S. At home in the Universe, the Search for the Laws of Complexity; Penguin: London, UK, 1996; pp. 1–321.
[2]  Kawai, F.; Shoda, M.; Harashima, R.; Sadaie, Y.; Hara, H.; Matsumoto, K. Cardiolipin domains in bacillus subtilis marburg membranes. J. Bacteriol.?2004, 186, 1475–1483, doi:10.1128/JB.186.5.1475-1483.2004.
[3]  Benford, G. Old legends. In New legends; Bear, G., Ed.; Legend Books (Random House UK): London, UK, 1995; pp. 292–306.
[4]  Schaechter, M.; Curtis, R., III; Ingraham, J.L.; Lin, E.C.C.; Low, K.B.; Magasanik, B.; Neidhardt, F.C.; Reznikoff, W.S.; Riley, M.; Umbarger, H.E. The view from here. In Escherichia coli and salmonella; Neidhardt, F.C., Ed.; American Society for Microbiology: Washington, DC, USA, 1996; pp. 2817–2822.
[5]  Crutchfield, J.P.; Young, K. Computation at the edge of chaos. In Complexity, Entropy and the Physics of Information: Sfi Studies in the Sciences of Complexity; Zurek, W.H., Ed.; Addison-Wesley: Reading, MA, USA, 1990; Volume VIII, pp. 223–269.
[6]  Langton, C.G. Computation at the edge of chaos—Phase-transitions and emergent computation. Physica. D?1990, 42, 12–37, doi:10.1016/0167-2789(90)90064-V.
[7]  Manning, G.S. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys.?1969, 51, 924–933, doi:10.1063/1.1672157.
[8]  Oosawa, F. Polyelectrolytes; Dekker: New York, NY, USA, 1971; pp. 1–160.
[9]  Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. Bioessays?2006, 28, 399–412, doi:10.1002/bies.20389. 16547956
[10]  Norris, V.; Delaune, A. Question 1: Contingency versus determinism. Origins Life Evol. Biosphere?2010, 40, 365–370.
[11]  Segre, D.; Ben-Eli, D.; Lancet, D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA?2000, 97, 4112–4117, doi:10.1073/pnas.97.8.4112.
[12]  Narayanaswamy, R.; Levy, M.; Tsechansky, M.; Stovall, G.M.; O'Connell, J.D.; Mirrielees, J.; Ellington, A.D.; Marcotte, E.M. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl. Acad. Sci. USA?2009, 106, 10147–10152, doi:10.1073/pnas.0812771106. 19502427
[13]  Norris, V.; Blaauwen, T.D.; Doi, R.H.; Harshey, R.M.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; Misevic, G.; Ripoll, C.; Saier Jnr., M.; Skarstad, K.; Thellier, M. Toward a Hyperstructure Taxonomy. Annu. Rev. Microbiol.?2007, 61, 309–329, doi:10.1146/annurev.micro.61.081606.103348.
[14]  Llopis, P.M.; Jackson, A.F.; Sliusarenko, O.; Surovtsev, I.; Heinritz, J.; Emonet, T.; Jacobs-Wagner, C. Spatial organization of the flow of genetic information in bacteria. Nature?2010, 466, 77–81, doi:10.1038/nature09152. 20562858
[15]  Nevo-Dinur, K.; Nussbaum-Shochat, A.; Ben-Yehuda, S.; Amster-Choder, O. Translation-independent localization of mRNA in E.coli. Science?2011, 331, 1081–1084, doi:10.1126/science.1195691.
[16]  Wang, W.; Li, G.W.; Chen, C.; Xie, X.S.; Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science?2011, 333, 1445–1449, doi:10.1126/science.1204697.
[17]  Livolant, F.Y.; Bouligand, Y. New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma?1978, 68, 21–44, doi:10.1007/BF00330370.
[18]  Minsky, A.; Shimoni, E.; Frenkiel-Krispin, D. Stress, order and survival. Nat. Rev. Mol. Cell Biol.?2002, 3, 50–60, doi:10.1038/nrm700. 11823798
[19]  Wolf, S.G.; Frenkiel, D.; Arad, T.; Finkel, S.E.; Kolter, R.; Minsky, A. DNA protection by stress-induced biocrystallization. Nature?1999, 400, 83–85, doi:10.1038/21918. 10403254
[20]  Mileykovskaya, E.; Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta.?2009, 1788, 2084–2091, doi:10.1016/j.bbamem.2009.04.003. 19371718
[21]  Nishibori, A.; Kusaka, J.; Hara, H.; Umeda, M.; Matsumoto, K. Phosphatidylethanolamine domains and localization of phospholipid synthases in bacillus subtilis membranes. J. Bacteriol.?2005, 187, 2163–2174, doi:10.1128/JB.187.6.2163-2174.2005.
[22]  Mayer, F. Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J. Mol. Microbiol. Biotechnol.?2006, 11, 228–243, doi:10.1159/000094057.
[23]  Defeu Soufo, H.J.; Reimold, C.; Linne, U.; Knust, T.; Gescher, J.; Graumann, P.L. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc. Natl. Acad. Sci. USA?2010, 107, 3163–3168, doi:10.1073/pnas.0911979107. 20133608
[24]  Exley, R.; Zouine, M.; Pernelle, J.-J.; Beloin, C.; Le Hegarat, F.; Deneubourg, A.M. A possible role for L24 of Bacillus subtilis in nucleoid organization and segregation. Biochimie?2001, 83, 269–275, doi:10.1016/S0300-9084(00)01228-1.
[25]  Miller, O.L., Jr.; Hamkalo, B.A.; Thomas, C.A., Jr. Visualization of bacterial genes in action. Science?1970, 169, 392–395, doi:10.1126/science.169.3943.392. 4915822
[26]  Cabrera, J.E.; Jin, D.J. The distribution of rna polymerase in escherichia coli is dynamic and sensitive to environmental cues. Mol. Microbiol.?2003, 50, 1493–1505, doi:10.1046/j.1365-2958.2003.03805.x.
[27]  Sobetzko, P.; Travers, A.; Muskhelishvili, G. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc. Natl. Acad. Sci. USA?2012, 109, E42–E50, doi:10.1073/pnas.1108229109. 22184251
[28]  Norris, V. Speculations on the initiation of chromosome replication in Escherichia coli: The dualism hypothesis. Med. Hypotheses?2011, 76, 706–716, doi:10.1016/j.mehy.2011.02.002.
[29]  Kamimura, A.; Kaneko, K. Reproduction of a protocell by replication of a minority molecule in a catalytic reaction network. Phys. Rev. Lett.?2010, 105, 268103, doi:10.1103/PhysRevLett.105.268103.
[30]  Amar, P.; Legent, G.; Thellier, M.; Ripoll, C.; Bernot, G.; Nystrom, T.; Saier, M.H., Jr.; Norris, V. A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst. Biol.?2008, 2, 27, doi:10.1186/1752-0509-2-27. 18366733
[31]  Fishov, I.; Zaritsky, A.; Grover, N.B. On microbial states of growth. Mol. Microbiol.?1995, 15, 789–794, doi:10.1111/j.1365-2958.1995.tb02349.x. 7596281
[32]  Mendelson, N.H. Bacterial growth and division: genes, structures, forces, and clocks. Microbiol. Rev.?1982, 46, 341–375. 6182451
[33]  Pritchard, R.H.; Barth, P.T.; Collins, T. Control of DNA synthesis in bacteria. Symp. Soc. Gen. Microbiol.?1969, 19, 263–297.
[34]  Schaechter, M.; Maaloe, O.; Kjeldgaard, N.O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol.?1958, 19, 592–606, doi:10.1099/00221287-19-3-592. 13611202
[35]  Cooper, S.; Helmstetter, C.E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol.?1968, 31, 519–540, doi:10.1016/0022-2836(68)90425-7.
[36]  Donachie, W.D. Relationship between cell size and time of initiation of DNA replication. Nature?1968, 219, 1077–1079, doi:10.1038/2191077a0.
[37]  Lobner-Olesen, A.; Skarstad, K.; Hansen, F.G.; von Meyenburg, K.; Boye, E. The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell?1989, 57, 881–889, doi:10.1016/0092-8674(89)90802-7. 2541928
[38]  Messer, W.; Bergmans, H.E.; Meijer, M.; Womack, J.E.; Hansen, F.G.; von Meyenburg, K. Mini-chromosomes: Plasmids which carry the E. coli replication origin. Mol. Gen. Genet.?1978, 162, 269–275, doi:10.1007/BF00268852.
[39]  Leonard, A.C.; Helmstetter, C.E. Cell cycle-specific replication of Escherichia coli minichromosomes. Proc. Natl. Acad. Sci. USA?1986, 83, 5101–5105, doi:10.1073/pnas.83.14.5101.
[40]  Hansen, F.G.; Rasmussen, K.V. Regulation of the dnaA product in Escherichia coli. Mol. Gen. Genet.?1977, 155, 219–225, doi:10.1007/BF00393163.
[41]  Churchward, G.; Estiva, E.; Bremer, H. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J. Bacteriol.?1981, 145, 1232–1238. 7009573
[42]  Wold, S.; Skarstad, K.; Steen, H.B.; Stokke, T.; Boye, E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. Embo. J.?1994, 13, 2097–2102. 8187762
[43]  Boye, E.; Nordstrom, K. Coupling the cell cycle to cell growth. EMBO Rep.?2003, 4, 757–760, doi:10.1038/sj.embor.embor895. 12897798
[44]  Hill, N.S.; Kadoya, R.; Chattoraj, D.K.; Levin, P.A. Cell size and the initiation of DNA replication in bacteria. PLoS Genet.?2012, 8, e1002549, doi:10.1371/journal.pgen.1002549.
[45]  Fralick, J.A. Is DnaA the 'pace-maker' of chromosome replication? An old paper revisited. Mol. Microbiol.?1999, 31, 1011–1012, doi:10.1046/j.1365-2958.1999.01227.x. 10048045
[46]  Eliasson, A.; Nordstrom, K. Replication of minichromosomes in a host in which chromosome replication is random. Mol. Microbiol.?1997, 23, 1215–1220, doi:10.1046/j.1365-2958.1997.2981663.x.
[47]  Lobner-Olesen, A.; von Freiesleben, U. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells. EMBO J.?1996, 15, 5999–6008. 8918477
[48]  Wang, X.; Lesterlin, C.; Reyes-Lamothe, R.; Ball, G.; Sherratt, D.J. Replication and segregation of an Escherichia coli chromosome with two replication origins. Proc. Natl. Acad. Sci. USA?2011, 108, E243–E250, doi:10.1073/pnas.1100874108. 21670292
[49]  Zakrzewska-Czerwinska, J.; Jakimowicz, D.; Zawilak-Pawlik, A.; Messer, W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol. Rev.?2007, 31, 378–387, doi:10.1111/j.1574-6976.2007.00070.x. 17459114
[50]  Fralick, J.A.; Lark, K.G. Evidence for the involvement of unsaturated fatty acids in the initiation of chromosome replication in escherichia coli. J. Mol. Biol.?1973, 80, 459–475, doi:10.1016/0022-2836(73)90416-6.
[51]  Castuma, C.E.; Crooke, E.; Kornberg, A. Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli. J. Biol. Chem.?1993, 268, 24665–24668. 8227025
[52]  Fujimitsu, K.; Senriuchi, T.; Katayama, T. Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA. Genes Dev.?2009, 23, 1221–1233, doi:10.1101/gad.1775809.
[53]  Kitagawa, R.; Ozaki, T.; Moriya, S.; Ogawa, T. Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev.?1998, 12, 3032–3043, doi:10.1101/gad.12.19.3032. 9765205
[54]  Norris, V.; Madsen, M.S. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: A model. J. Mol. Biol.?1995, 253, 739–748, doi:10.1006/jmbi.1995.0587.
[55]  Rocha, E.; Fralick, J.; Vediyappan, G.; Danchin, A.; Norris, V. A strand-specific model for chromosome segregation in bacteria. Mol. Microbiol.?2003, 49, 895–903, doi:10.1046/j.1365-2958.2003.03606.x.
[56]  Jin, D.J.; Cagliero, C.; Zhou, Y.N. Growth rate regulation in Escherichia coli. FEMS Microbiol. Rev.?2012, 36, 269–287, doi:10.1111/j.1574-6976.2011.00279.x.
[57]  Kennell, D.; Riezman, H. Transcription and translation frequencies of the Escherichia coli lac operon. J. Mol. Biol.?1977, 114, 1–21, doi:10.1016/0022-2836(77)90279-0.
[58]  Brandt, F.; Etchells, S.A.; Ortiz, J.O.; Elcock, A.H.; Hartl, F.U.; Baumeister, W. The native 3D organization of bacterial polysomes. Cell?2009, 136, 261–271, doi:10.1016/j.cell.2008.11.016. 19167328
[59]  Norris, V. Hypothesis: Transcriptional sensing and membrane domain formation initiate chromosome replication in Escherichia coli. Mol. Microbiol.?1995, 15, 985–987, doi:10.1111/j.1365-2958.1995.tb02367.x.
[60]  Cabrera, J.E.; Cagliero, C.; Quan, S.; Squires, C.L.; Jin, D.J. Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: Examining the effect of transcription on nucleoid structure in the absence of transertion. J. Bacteriol.?2009, 191, 4180–4185, doi:10.1128/JB.01707-08. 19395497
[61]  Fr?hlich, H. Long range coherence and energy storage in biological systems. Int. J. Quantum Chem.?1968, 42, 641–649.
[62]  Norris, V.; Amar, P.; Legent, G.; Ripoll, C.; Thellier, M.; Ovadi, J. Modelling complex biological systems in the context of genomics. In Hypothesis: The Cytoskeleton is A Metabolic Sensor; Amar, P., Képès, F., Norris, V., Eds.; EDP Sciences: Evry, France, 2010; pp. 95–104.
[63]  Weart, R.B.; Lee, A.H.; Chien, A.C.; Haeusser, D.P.; Hill, N.S.; Levin, P.A. A metabolic sensor governing cell size in bacteria. Cell?2007, 130, 335–347, doi:10.1016/j.cell.2007.05.043. 17662947
[64]  Thellier, M.; Legent, G.; Amar, P.; Norris, V.; Ripoll, C. Steady-state kinetic behaviour of functioning-dependent structures. FEBS J.?2006, 273, 4287–4299, doi:10.1111/j.1742-4658.2006.05425.x. 16939622
[65]  Pieper, R.; Zhang, Q.; Clark, D.J.; Huang, S.T.; Suh, M.J.; Braisted, J.C.; Payne, S.H.; Fleischmann, R.D.; Peterson, S.N.; Tzipori, S. Characterizing the Escherichia coli O157:H7 proteome including protein associations with higher order assemblies. PLoS One?2011, 6, e26554, doi:10.1371/journal.pone.0026554. 22087229
[66]  Wada, A.; Mikkola, R.; Kurland, C.G.; Ishihama, A. Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of escherichia coli. J. Bacteriol.?2000, 182, 2893–2899, doi:10.1128/JB.182.10.2893-2899.2000.
[67]  Ortiz, J.O.; Brandt, F.; Matias, V.R.; Sennels, L.; Rappsilber, J.; Scheres, S.H.; Eibauer, M.; Hartl, F.U.; Baumeister, W. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J. Cell. Biol.?2010, 190, 613–621, doi:10.1083/jcb.201005007. 20733057
[68]  Ripoll, C.; Norris, V.; Thellier, M. Ion condensation and signal transduction. BioEssays?2004, 26, 549–557, doi:10.1002/bies.20019. 15112235
[69]  Kaguni, J.M. DnaA: Controlling the Initiation of Bacterial DNA Replication and More. Annu. Rev. Microbiol.?2006, 60, 351–371, doi:10.1146/annurev.micro.60.080805.142111.
[70]  Mott, M.L.; Berger, J.M. DNA replication initiation: Mechanisms and regulation in bacteria. Nat. Rev. Microbiol.?2007, 5, 343–354, doi:10.1038/nrmicro1640.
[71]  Katayama, T.; Ozaki, S.; Keyamura, K.; Fujimitsu, K. Regulation of the replication cycle: Conserved and diverse regulatory systems for DnaA and oriC. Nat. Rev. Microbiol.?2010, 8, 163–170, doi:10.1038/nrmicro2314. 20157337
[72]  Hansen, F.G.; Christensen, B.B.; Atlung, T. The initiator titration model: Computer simulation of chromosome and minichromosome control. Res. Microbiol.?1991, 142, 161–167, doi:10.1016/0923-2508(91)90025-6. 1925015
[73]  Christensen, B.B.; Atlung, T.; Hansen, F.G. Dnaa boxes are important elements in setting the initiation mass of escherichia coli. J. Bacteriol.?1999, 181, 2683–2688. 10217754
[74]  Duderstadt, K.E.; Chuang, K.; Berger, J.M. DNA stretching by bacterial initiators promotes replication origin opening. Nature?2011, 478, 209–213, doi:10.1038/nature10455. 21964332
[75]  Leonard, A.C.; Grimwade, J.E. Initiating chromosome replication in E. coli: it makes sense to recycle. Genes Dev.?2009, 23, 1145–1150, doi:10.1101/gad.1809909.
[76]  Messer, W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev.?2002, 26, 355–374. 12413665
[77]  Kurokawa, K.; Nishida, S.; Emoto, A.; Sekimizu, K.; Katayama, T. Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. Embo. J.?1999, 18, 6642–6652, doi:10.1093/emboj/18.23.6642. 10581238
[78]  Regev, T.; Myers, N.; Zarivach, R.; Fishov, I. Association of the chromosome replication initiator DnaA with the Escherichia coli inner membrane in vivo: quantity and mode of binding. PLoS One?2012, 7, e36441, doi:10.1371/journal.pone.0036441. 22574163
[79]  Soufo, C.D.; Soufo, H.J.; Noirot-Gros, M.F.; Steindorf, A.; Noirot, P.; Graumann, P.L. Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev. Cell.?2008, 15, 935–941, doi:10.1016/j.devcel.2008.09.010. 19081080
[80]  Boeneman, K.; Fossum, S.; Yang, Y.; Fingland, N.; Skarstad, K.; Crooke, E. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments. Mol. Microbiol.?2009, 72, 645–657, doi:10.1111/j.1365-2958.2009.06674.x. 19400775
[81]  Nozaki, S.; Niki, H.; Ogawa, T. Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J. Bacteriol.?2009, 191, 4807–4814, doi:10.1128/JB.00435-09. 19502409
[82]  Landgraf, D.; Okumus, B.; Chien, P.; Baker, T.A.; Paulsson, J. Segregation of molecules at cell division reveals native protein localization. Nat. Methods?2012, 9, 480–482, doi:10.1038/nmeth.1955.
[83]  Swulius, M.T.; Jensen, G.J. The helical MreB cytoskeleton in E. coli MC1000/pLE7 is an artifact of the N-terminal YFP tag. J. Bacteriol.?2012.
[84]  Garner, E.C.; Bernard, R.; Wang, W.; Zhuang, X.; Rudner, D.Z.; Mitchison, T. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science?2011, 333, 222–225, doi:10.1126/science.1203285. 21636745
[85]  Dominguez-Escobar, J.; Chastanet, A.; Crevenna, A.H.; Fromion, V.; Wedlich-Soldner, R.; Carballido-Lopez, R. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science?2011, 333, 225–228, doi:10.1126/science.1203466. 21636744
[86]  Fishov, I.; Norris, V. The heterogeneous bacterial membrane as a global regulator. Curr. Opin. Microbiol.?2012. submitted.
[87]  Makise, M.; Mima, S.; Katsu, T.; Tsuchiya, T.; Mizushima, T. Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Mol. Microbiol.?2002, 46, 245–256, doi:10.1046/j.1365-2958.2002.03161.x. 12366847
[88]  Norris, V.; den Blaauwen, T.; Cabin-Flaman, A.; Doi, R.H.; Harshey, R.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; Saier, M., Jr.; Skarstad, K. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev.?2007, 71, 230–253, doi:10.1128/MMBR.00035-06.
[89]  Maciag-Dorszynska, M.; Ignatowska, M.; Janniere, L.; Wegrzyn, G.; Szalewska-Palasz, A. Mutations in central carbon metabolism genes suppress defects in nucleoid position and cell division of replication mutants in Escherichia coli. Gene?2012, 503, 31–35, doi:10.1016/j.gene.2012.04.066.
[90]  Koppelman, C.-M.; Den Blaauwen, T.; Duursma, M.C.; Heeren, R.M.A.; Nanninga, N. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol.?2001, 183, 6144–6147, doi:10.1128/JB.183.20.6144-6147.2001.
[91]  Leonard, A.C.; Grimwade, J.E. Regulating DnaA complex assembly: it is time to fill the gaps. Curr. Opin. Microbiol.?2010, 13, 766–772, doi:10.1016/j.mib.2010.10.001. 21035377
[92]  Chodavarapu, S.; Felczak, M.M.; Kaguni, J.M. Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. Nucleic Acids Res.?2011, 39, 4180–4191, doi:10.1093/nar/gkq1203. 21288885
[93]  Nozaki, S.; Yamada, Y.; Ogawa, T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells?2009, 14, 329–341, doi:10.1111/j.1365-2443.2008.01269.x.
[94]  Yung, B.Y.; Kornberg, A. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. Proc. Natl. Acad. Sci. USA?1988, 85, 7202–7205, doi:10.1073/pnas.85.19.7202.
[95]  Makise, M.; Mima, S.; Tsuchiya, T.; Mizushima, T. Molecular mechanism for functional interaction between DnaA protein and acidic phospholipids: Identification of important amino acids. J. Biol. Chem.?2001, 276, 7450–7456, doi:10.1074/jbc.M009643200. 11102450
[96]  Sekimizu, K.; Kornberg, A. Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J. Biol. Chem.?1988, 263, 7131–7135. 2835364
[97]  Yamamoto, K.; Muniruzzaman, S.; Rajagopalan, M.; Madiraju, M.V. Modulation of Mycobacterium tuberculosis DnaA protein-adenine-nucleotide interactions by acidic phospholipids. Biochem. J.?2002, 363, 305–311, doi:10.1042/0264-6021:3630305. 11931658
[98]  Ichihashi, N.; Kurokawa, K.; Matsuo, M.; Kaito, C.; Sekimizu, K. Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. J. Biol. Chem.?2003, 278, 28778–28786, doi:10.1074/jbc.M212202200. 12767975
[99]  Norris, V. DNA replication in escherichia coli is initiated by membrane detachment of oric: A model. J. Mol. Biol.?1990, 215, 67–71, doi:10.1016/S0022-2836(05)80095-6.
[100]  Norris, V. Phospholipid domains determine the spatial organization of the escherichia coli cell cycle: The membrane tectonics model. J. Theor. Bio.?1992, 154, 91–107, doi:10.1016/S0022-5193(05)80190-0.
[101]  Norris, V.; Demarty, M.; Raine, D.; Cabin-Flaman, A.; Le Sceller, L. Hypothesis: Hyperstructures regulate initiation in Escherichia coli and other bacteria. Biochimie?2002, 84, 341–347, doi:10.1016/S0300-9084(02)01387-1.
[102]  Mileykovskaya, E.; Dowhan, W. Visualization of phospholipid domains in escherichia coli by using the cardiolipin-specific fluorescent dye 10-n-nonyl acridine orange. J. Bacteriol.?2000, 182, 1172–1175, doi:10.1128/JB.182.4.1172-1175.2000.
[103]  Maloney, E.; Madiraju, S.C.; Rajagopalan, M.; Madiraju, M. Localization of acidic phospholipid cardiolipin and DnaA in mycobacteria. Tuberculosis (Edinb.)?2011, 91 Suppl. 1, S150–S155, doi:10.1016/j.tube.2011.10.025.
[104]  Fishov, I.; Woldringh, C. Visualization of membrane domains in escherichia coli. Mol. Microbiol.?1999, 32, 1166–1172, doi:10.1046/j.1365-2958.1999.01425.x. 10383758
[105]  Binenbaum, Z.; Parola, A.H.; Zaritsky, A.; Fishov, I. Transcription- and translation-dependent changes in membrane dynamics in bacteria: Testing the transertion model for domain formation. Mol. Microbiol.?1999, 32, 1173–1182, doi:10.1046/j.1365-2958.1999.01426.x. 10383759
[106]  Michel, G.P.F.; Karibian, D.; Bonnaveiro, N.; Starka, J. Is there a correlation between membrane phospholipid metabolism and cell division? Ann. Inst. Pasteur?1985, 136A, 111–118.
[107]  Joseleau-Petit, D.; Kepes, F.; Peutat, L.; D'Ari, R.; Kepes, A. DNA replication initiation, doubling of rate of phospholipid synthesis, and cell division in escherichia coli. J. Bacteriol.?1987, 169, 3701–3706. 3301809
[108]  Haines, T.H.; Dencher, N.A. Cardiolipin: A proton trap for oxidative phosphorylation. FEBS Lett.?2002, 528, 35–39, doi:10.1016/S0014-5793(02)03292-1. 12297275
[109]  Hansen, F.G.; Atlung, T.; Braun, R.E.; Wright, A.; Hughes, P.; Kohiyama, M. Initiator (DnaA) protein concentration as a function of growth rate in Escherichia coli and Salmonella typhimurium. J. Bacteriol.?1991, 173, 5194–5199. 1860829
[110]  Roth, A.; Messer, W. High-affinity binding sites for the initiator protein DnaA on the chromosome of Escherichia coli. Mol. Microbiol.?1998, 28, 395–401, doi:10.1046/j.1365-2958.1998.00813.x. 9622363
[111]  Kitagawa, R.; Mitsuki, H.; Okazaki, T.; Ogawa, T. A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome. Mol. Microbiol.?1996, 19, 1137–1147, doi:10.1046/j.1365-2958.1996.453983.x. 8830270
[112]  Morigen; Lobner-Olesen, A.; Skarstad, K. Titration of the escherichia coli dnaa protein to excess data sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol. Microbiol.?2003, 46, 245–256.
[113]  Felczak, M.M.; Kaguni, J.M. DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli. Mol. Microbiol.?2009, 72, 1348–1363, doi:10.1111/j.1365-2958.2009.06724.x. 19432804
[114]  Li, G.W.; Berg, O.G.; Elf, J. Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat. Phys.?2009, 5, 294–297, doi:10.1038/nphys1222.
[115]  Oshima, T.; Ishikawa, S.; Kurokawa, K.; Aiba, H.; Ogasawara, N. Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res.?2006, 13, 141–153, doi:10.1093/dnares/dsl009. 17046956
[116]  Maurer, S.; Fritz, J.; Muskhelishvili, G. A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. J. Mol. Biol.?2009, 387, 1261–1276, doi:10.1016/j.jmb.2009.02.050. 19254726
[117]  Browning, D.F.; Grainger, D.C.; Busby, S.J. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr. Opin. Microbiol.?2010, 13, 773–780, doi:10.1016/j.mib.2010.09.013. 20951079
[118]  Dillon, S.C.; Dorman, C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol.?2010, 8, 185–195, doi:10.1038/nrmicro2261. 20140026
[119]  Ryan, V.T.; Grimwade, J.E.; Camara, J.E.; Crooke, E.; Leonard, A.C. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol. Microbiol.?2004, 51, 1347–1359, doi:10.1046/j.1365-2958.2003.03906.x. 14982629
[120]  Swinger, K.K.; Rice, P.A. IHF and HU: Flexible architects of bent DNA. Curr. Opin. Struct. Biol.?2004, 14, 28–35, doi:10.1016/j.sbi.2003.12.003. 15102446
[121]  Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev. Biophys.?1978, 11, 179–246, doi:10.1017/S0033583500002031. 353876
[122]  Zimm, B.H.; Le Bret, M. Counter ion condensation and system dimensionality. J. Biomol. Struct. Dynamics?1983, 1, 461–471, doi:10.1080/07391102.1983.10507455.
[123]  Manning, G.S. Counterion condensation on charged spheres, cylinders, and planes. J. Phys. Chem. B?2007, 111, 8554–8559, doi:10.1021/jp0670844.
[124]  Manning, G.S. Electrostatic free energy of the DNA double helix in counterion condensation theory. Biophys. Chem.?2002, 101–102, 461–473, doi:10.1016/S0301-4622(02)00162-X.
[125]  von Hippel, P.H. From "simple" DNA-protein interactions to the macromolecular machines of gene expression. Annu. Rev. Biophys. Biomol. Struct.?2007, 36, 79–105, doi:10.1146/annurev.biophys.34.040204.144521. 17477836
[126]  Aranovich, A.; Gdalevsky, G.Y.; Cohen-Luria, R.; Fishov, I.; Parola, A.H. Membrane-catalyzed nucleotide exchange on DnaA. Effect of surface molecular crowding. J. Biol. Chem.?2006, 281, 12526–12534, doi:10.1074/jbc.M510266200. 16517983
[127]  Atlung, T.; Hansen, F.G. Effect of different concentrations of H-NS protein on chromosome replication and the cell cycle in Escherichia coli. J. Bacteriol.?2002, 184, 1843–1850, doi:10.1128/JB.184.7.1843-1850.2002. 11889089
[128]  Von Freiesleben, U.; Rasmussen, K.V.; Atlung, T.; Hansen, F.G. Rifampicin-resistant initiation of chromosome replication from oriC in ihf mutants. Mol. Microbiol.?2000, 37, 1087–1093, doi:10.1046/j.1365-2958.2000.02060.x. 10972827
[129]  Guarino, E.; Jimenez-Sanchez, A.; Guzman, E.C. Defective Ribonucleoside Diphosphate Reductase Impairs Replication Fork Progression in Escherichia coli. J. Bacteriol.?2007, 189, 3496–3501, doi:10.1128/JB.01632-06. 17322311
[130]  Odsbu, I.; Morigen; Skarstad, K. A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS One?2009, 4, e7617, doi:10.1371/journal.pone.0007617.
[131]  Sanchez-Romero, M.A.; Molina, F.; Jimenez-Sanchez, A. Organization of ribonucleoside diphosphate reductase during multifork chromosome replication in Escherichia coli. Microbiology?2011, 157, 2220–2225, doi:10.1099/mic.0.049478-0. 21659325
[132]  Janniere, L.; Canceill, D.; Suski, C.; Kanga, S.; Dalmais, B.; Lestini, R.; Monnier, A.F.; Chapuis, J.; Bolotin, A.; Titok, M.; Chatelier, E.L.; Ehrlich, S.D. Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE?2007, 2, e447, doi:10.1371/journal.pone.0000447. 17505547
[133]  Maciag, M.; Nowicki, D.; Janniere, L.; Szalewska-Palasz, A.; Wegrzyn, G. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli. Microb. Cell. Fact.?2011, 10, 19, doi:10.1186/1475-2859-10-19. 21453533
[134]  Wolfe, A.J. Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr. Opin. Microbiol.?2010, 13, 204–209, doi:10.1016/j.mib.2010.01.002. 20117041
[135]  Motojima-Miyazaki, Y.; Yoshida, M.; Motojima, F. Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochem. Biophys. Res. Commun.?2010, 400, 241–245, doi:10.1016/j.bbrc.2010.08.047.
[136]  Kjeldgaard, N.O.; Maaloe, O.; Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol.?1958, 19, 607–616, doi:10.1099/00221287-19-3-607. 13611203
[137]  Gourse, R.L.; Gaal, T.; Bartlett, M.S.; Appleman, J.A.; Ross, W. rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol.?1996, 50, 645–677, doi:10.1146/annurev.micro.50.1.645.
[138]  Bremer, H.; Dennis, P.P. Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella; Neidhardt, F.C., Curtiss, R., Curtiss, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, H.E., Eds.; ASM Press: Washington, DC, USA, 1996; Volume 1, pp. 1553–1569.
[139]  Potrykus, K.; Murphy, H.; Philippe, N.; Cashel, M. ppGpp is the major source of growth rate control in E. coli. Environ. Microbiol.?2011, 13, 563–575, doi:10.1111/j.1462-2920.2010.02357.x.
[140]  Gropp, M.; Strausz, Y.; Gross, M.; Glaser, G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J. Bacteriol.?2001, 183, 570–579, doi:10.1128/JB.183.2.570-579.2001. 11133950
[141]  English, B.P.; Hauryliuk, V.; Sanamrad, A.; Tankov, S.; Dekker, N.H.; Elf, J. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl. Acad. Sci. USA?2011, 108, E365–E373, doi:10.1073/pnas.1102255108. 21730169
[142]  Wang, J.D.; Sanders, G.M.; Grossman, A.D. Nutritional control of elongation of DNA Replication by (p)ppGpp. Cell?2007, 128, 865–875, doi:10.1016/j.cell.2006.12.043. 17350574
[143]  Kogoma, T. Stable DNA replication: Interplay between DNA replication, homologous recombination and transcription. Microbiol. Mol. Biol. Rev.?1997, 61, 212–238. 9184011
[144]  Sandler, S.J. Requirements for replication restart proteins during constitutive stable DNA replication in Escherichia coli K-12. Genetics?2005, 169, 1799–1806, doi:10.1534/genetics.104.036962. 15716497
[145]  Byrne, M.E.; Ball, D.A.; Guerquin-Kern, J.L.; Rouiller, I.; Wu, T.D.; Downing, K.H.; Vali, H.; Komeili, A. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc. Natl. Acad. Sci. USA?2010, 107, 12263–12268, doi:10.1073/pnas.1001290107. 20566879
[146]  Gangwe Nana, G.; Gibouin, D.; Lefebvre, F.; Delaune, A.; Jannière, L.; Ripoll, C.; Cabin-Flaman, A.; Norris, V. Modelling complex biological systems in the context of genomics. In Intracellular and Population Heterogeneity in Bacillus Subtilis Revealed by Secondary Ion Mass Spectrometry; Amar, P., Képès, F., Norris, V., Eds.; EDF Sciences: Evry, France, 2012; pp. 79–84.
[147]  Cabin-Flaman, A.; Monnier, A.F.; Coffinier, Y.; Audinot, J.N.; Gibouin, D.; Wirtz, T.; Boukherroub, R.; Migeon, H.N.; Bensimon, A.; Janniere, L.; Ripoll, C.; Norris, V. Combed Single DNA Molecules Imaged by Secondary Ion Mass Spectrometry. Annu. Chem.?2011, 83, 6940–6947, doi:10.1021/ac201685t.
[148]  Hong, X.; Kogoma, T. Absence of a direct role for RNase HI in initiation of DNA replication at the oriC site on the Escherichia coli chromosome. J. Bacteriol.?1993, 175, 6731–6734. 8407851
[149]  Raine, D.J.; Grondin, Y.; Thellier, M.; Norris, V. Networks as constrained thermodynamic systems. C.R. Acad. Sci.?2003, 326, 65–74.
[150]  Batto, A.F.; Cabin, A.; Legent, G.; Canceill, D.; Le Chatelier, E.; Ripoll, C.; Thellier, M.; Norris, V.; Janniere, L. Modelling complex biological systems in the context of genomics. In From Metabolic Hyperstructures to DNA Replication Complexes and Back Again; Amar, P., Képès, F., Norris, V., Bernot, G., Eds.; EDP Sciences: Evry, France, 2008; pp. 161–178.
[151]  Mayer, F. Cytoskeletons in prokaryotes. Cell Biol. Int.?2003, 27, 429–438, doi:10.1016/S1065-6995(03)00035-0. 12758091
[152]  Naseem, R.; Wann, K.T.; Holland, I.B.; Campbell, A.K. ATP regulates calcium efflux and growth in E. coli. J. Mol. Biol.?2009, 391, 42–56, doi:10.1016/j.jmb.2009.05.064.
[153]  Popp, D.; Iwasa, M.; Erickson, H.P.; Narita, A.; Maeda, Y.; Robinson, R.C. Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J. Biol. Chem.?2010, 285, 11281–11289, doi:10.1074/jbc.M109.084079. 20139085
[154]  Strahl, H.; Hamoen, L. The actin homolog MreB organizes the bacterial cell membrane. 2012. Unpublished Work.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133