While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks.
References
[1]
Berge, J. Fieldbuses for Process Control: Engineering, Operation, and Maintenance; ISA: Research Triangle Park, NC, USA, 2001.
Willig, A.; Matheus, K.; Wolisz, A. Wireless technology in industrial networks. Proc. IEEE 2005, 93, 1130–1151, doi:10.1109/JPROC.2005.849717.
[4]
IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs); IEEE Stdandard 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), 2011.
[5]
Scheible, G.; Dacfey, D.; Endresen, J.; Frey, J.E. Unplugged but connected [Design and implementation of a truly wireless real-time sensor/actuator interface]. IEEE Ind. Electron. Mag. 2007, 1, 25–34.
[6]
ZigBee PRO Specification; ZigBee Alliance Standard, October, 2007.
[7]
British Standards Institute, Industrial Communication Networks-Fieldbus Specifications, WirelessHART Communication Network and Communication Profile, 1.0, 2009. IEC/PAS 62591.
[8]
Liang, W.; Zhang, X.; Xiao, Y.; Wang, F.; Zeng, P.; Yu, H. Survey and experiments of WIA-PA specification of industrial wireless network. Wirel. Commun. Mob. Comput. 2011, 11, 1197–1212, doi:10.1002/wcm.976.
[9]
The International Society of Automation, Wireless Systems for Industrial Automation: Process Control and Related Applications; ISA Standard ISA-100.11a-2011, 2009.
[10]
IEEE Standard for Local and Metropolitan Area Networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer; IEEE Stdandard 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), 2012.
[11]
Pister, K.; Doherty, L. TSMP: Time Synchronized Mesh Protocol. In Proceedings of IASTED Distributed Sensor Networks, Orlando, FL, USA, 16–18 November 2008; pp. 391–398.
[12]
Zurawski, R. Networked Embedded Systems; CRC Press: Boca Raton, FL, USA, 2009.
[13]
Christin, D.; Mogre, P.S.; Hollick, M. Survey on wireless sensor network technologies for industrial automation: The security and quality of service perspectives. Future Internet 2010, 2, 96–125, doi:10.3390/fi2020096.
[14]
Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005.
[15]
Ketcham, R.; Frolik, J. A Low-Complexity, Compact Antenna for Mitigating Frequency-Selective Fading. In Proceedings of the 6th International Symposium on Information Processing in Sensor Networks (IPSN 2007), Cambridge, MA, USA, 25–27 April 2007; pp. 573–574.
[16]
Liang, J.; Liang, Q. Channel Selection Algorithms in Virtual MIMO Sensor Networks. In Proceedings of the 1st ACM International Workshop on Heterogeneous Sensor and Actor Networks, Hong Kong, China, 30 May 2008; pp. 73–80.
[17]
Nethi, S.; Jantti, R.; Nassi, V. Time and Antenna Diversity in Wireless Sensor and Actuator Networks. In Proceedings of 2009 IEEE the 9th Malaysia International Conference on Communications (MICC), Kuala Lumpur, Malaysia, 15–17 December 2009; pp. 932–937.
[18]
Giorgetti, G.; Cidronali, A.; Gupta, S.K.S.; Manes, G. Exploiting Low-Cost Directional Antennas in 2.4 GHz IEEE 802.15.4 Wireless Sensor Networks. In Proceedings of 2007 European Conference on Wireless Technologies, Kuala Lumpur, Malaysia, 8–10 October 2007; pp. 217–220.
[19]
Santivanez, C.; Redi, J. On the use of Directional Antennas for Sensor Networks. In Proceedings of 2003 IEEE Military Communications Conference (MILCOM ’03), Boston, MA, USA, 13–16 October 2003; 971, pp. 670–675.
[20]
Laneman, J.N.; Wornell, G.W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. Inf. Theory 2003, 49, 2415–2425, doi:10.1109/TIT.2003.817829.
[21]
Sendonaris, A.; Erkip, E.; Aazhang, B. User cooperation diversity. Part I. System description. IEEE Trans. Commun. 2003, 51, 1927–1938, doi:10.1109/TCOMM.2003.818096.
[22]
Nosratinia, A.; Hunter, T.E.; Hedayat, A. Cooperative communication in wireless networks. IEEE Commun. Mag. 2004, 42, 74–80, doi:10.1109/MCOM.2004.1341264.
[23]
Hong, Y.W.; Huang, W.J.; Chiu, F.H.; Kuo, C.C.J. Cooperative communications in resource-constrained wireless networks. IEEE Signal Proc. Mag. 2007, 24, 47–57.
[24]
Ochiai, H.; Mitran, P.; Tarokh, V. Design and Analysis of Collaborative Diversity Protocols for Wireless Sensor Networks. In Proceedings of 2004 IEEE 60th Vehicular Technology Conference (VTC2004-Fall), Los Angeles, CA, USA, 26–29 September 2004; 4647, pp. 4645–4649.
[25]
Xuedong, L.; Min, C.; Yang, X.; Balasingham, I.; Leung, V.C.M. A Novel Cooperative Communication Protocol for QoS Provisioning in Wireless Sensor Networks. In Proceedings of the 5th International Conference onTestbeds and Research Infrastructures for the Development of Networks & Communities and Workshops (TridentCom 2009), Washington, DC, USA, 6–8 April 2009; pp. 1–6.
[26]
Watteyne, T.; Lanzisera, S.; Mehta, A.; Pister, K.S.J. Mitigating Multipath Fading through Channel Hopping in Wireless Sensor Networks. In Proceedings of 2010 IEEE International Conference on Communications (ICC), Cape Town, South Africa, 23–27 May 2010; pp. 1–5.
[27]
Watteyne, T.; Mehta, A.; Pister, K. Reliability through Frequency Diversity: Why Channel Hopping Makes Sense. In Proceedings of the 6th ACM Symposium on Performance Evaluation of Wireless ad hocSensorand Ubiquitous Networks, Tenerife, Spain, 28–29 October 2009; pp. 116–123.
[28]
Liu, R.; Yan, W.; Wassell, I.J.; Soga, K. Can Frequency Diversity Provide Performance Gains for WSNs at 2.4GHz for the Fire Hydrant to above Ground Channel. In Proceedings of Antennas & Propagation Conference (LAPC 2009), Leicestershire, UK, 16–17 November 2009; pp. 545–548.
[29]
Kusy, B.; Richter, C.; Wen, H.; Afanasyev, M.; Jurdak, R.; Brunig, M.; Abbott, D.; Cong, H.; Ostry, D. Radio Diversity for Reliable Communication in WSNs. In Proceedings of 2011 10th International Conference on Information Processing in Sensor Networks (IPSN), Chicago, IL, USA, 12–14 April 2011; pp. 270–281.
[30]
Ortiz, J.; Culler, D. Multichannel Reliability Assessment in Real World WSNs. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, Stockholm, Sweden, 12–16 April 2010; pp. 162–173.
[31]
Gonga, A.; Landsiedel, O.; Soldati, P.; Johansson, M. Multi-Channel Communication vs. Adaptive Routing for Reliable Communication in WSNs. In Proceedings of the 11th International Conference on Information Processing in Sensor Networks, Beijing, China, April 2012; pp. 125–126.
[32]
Vuran, M.C.; Akyildiz, I.F. Cross-Layer Analysis of Error Control in Wireless Sensor Networks. In Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON ’06), Reston, VA, USA, 28–28 September 2006; pp. 585–594.
[33]
Vuran, M.C.; Akyildiz, I.F. Error control in wireless sensor networks: A cross layer analysis. IEEE/ACM Trans. Netw. 2009, 17, 1186–1199, doi:10.1109/TNET.2008.2009971.
[34]
Biswas, R.; Jain, V.; Ghosh, C.; Agrawal, D.P. On-Demand Reliable Medium Access in Sensor Networks. In Proceedings of the 2006 International Symposium on on World of WirelessMobile and Multimedia Networks, Buffalo, NY, USA, 26–29 June 2006; pp. 251–257.
[35]
Shigang, C.; Nahrstedt, K. An overview of quality of service routing for next-generation high-speed networks: Problems and solutions. IEEE Netw. 1998, 12, 64–79, doi:10.1109/65.752646.
Dulman, S.; Nieberg, T.; Wu, J.; Havinga, P. Trade-off between Traffic Overhead and Reliability in Multipath Routing for Wireless Sensor Networks. In Proceeding of 2003 IEEE Wireless Communications and Networking (WCNC 2003), New Orleans, LA, USA, 20–20 March 2003; 1913, pp. 1918–1922.
[38]
Deb, B.; Bhatnagar, S.; Nath, B. ReInForM: Reliable Information Forwarding Using Multiple Paths in Sensor Networks. In Proceedings of the 28th Annual IEEE International Conference on Local Computer Networks (LCN ’03), Bonn/K?nigswinter, Germany, 20–24 October 2003; pp. 406–415.
[39]
Huang, X.; Fang, Y. Multiconstrained QoS multipath routing in wireless sensor networks. Wirel. Netw. 2008, 14, 465–478, doi:10.1007/s11276-006-0731-9.
[40]
Matsuda, T.; Noguchi, T.; Takine, T. Survey of network coding and its applications. IEICE Trans. Commun. 2011, 94, 698–717.
[41]
Al-Kofahi, O.M.; Kamal, A. Network coding-based protection of many-to-one wireless flows. IEEE J. Sel. Areas Commun. 2009, 27, 797–813, doi:10.1109/JSAC.2009.090619.
[42]
Widmer, J.; Boudec, J.-Y.L. Network Coding for Efficient Communication in Extreme Networks. In Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, PA, USA, August 2005; pp. 284–291.
[43]
Yunfeng, L.; Liang, B.; Baochun, L. Passive Loss Inference in Wireless Sensor Networks Based on Network Coding. In Proceedings of IEEE INFOCOM 2009, Rio De Janeiro, Brazil, 19–25 April 2009; pp. 1809–1817.
[44]
Shah-Mansouri, V.; Wong, V.W.S. Link Loss Inference in Wireless Sensor Networks with Randomized Network Coding. In Proceedings of 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), Miami, FL, USA, 6–10 December 2010; pp. 1–6.
[45]
Ergen, S.C.; Varaiya, P. PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Trans. Mob. Comput. 2006, 5, 920–930, doi:10.1109/TMC.2006.100.
[46]
Chintalapudi, K.K.; Venkatraman, L. On the Design of MAC Protocols for Low-Latency Hard Real-Time Discrete Control Applications over 802.15.4 Hardware. In Proceedings of International Conference on Information Processing in Sensor Networks (IPSN ’08), Louis, MO, USA, 22–24 April 2008; pp. 356–367.
[47]
Salajegheh, M.; Soroush, H.; Kalis, A. HYMAC: Hybrid TDMA/FDMA Medium Access Control Protocol for Wireless Sensor Networks. In Proceedings of IEEE the 18th International Symposium on PersonalIndoor and Mobile Radio Communications (PIMRC 2007), Athens, Greece, 3–7 September 2007; pp. 1–5.
[48]
Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 2004, 12, 493–506, doi:10.1109/TNET.2004.828953.
[49]
Wei, Y.; Heidemann, J.; Estrin, D. An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In Proceedings of IEEE INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, New York, NY, USA, 23–27 June 2002; 1563, pp. 1567–1576.
[50]
van Dam, T.; Langendoen, K. An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks; ACM: New York, NY, USA, 2003; pp. 171–180.
[51]
Lin, P.; Qiao, C.; Wang, X. Medium Access Control with a Dynamic Duty Cycle for Sensor Networks. In Proceedings of 2004 IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, GA, USA, 21–25 March 2004; 1533, pp. 1534–1539.
[52]
Namboodiri, V.; Keshavarzian, A. Alert: An Adaptive Low-Latency Event-Driven MAC Protocol for Wireless Sensor Networks. In Proceedings of the 7th International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 159–170.
[53]
Lu, G.; Krishnamachari, B.; Raghavendra, C.S. An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor Networks. In Proceedings of the 18th InternationalParallel and Distributed Processing Symposium, Santa Fe, NM, USA, 26–30 April 2004; p. 224.
[54]
Vasanthi, N.A.; Annadurai, S. Energy Efficient Sleep Schedule for Achieving Minimum Latency in Query based Sensor Networks. In Proceedings of IEEE International Conference on Sensor NetworksUbiquitousand Trustworthy Computing, Taichung, Taiwan, 5–7 June 2006; pp. 214–219.
[55]
Xue, Y.; Vaidya, N.H. A Wakeup Scheme for Sensor Networks: Achieving Balance between Energy Saving and End-to-End Delay. In Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2004), Toronto, ON, Canada, 25–28 May 2004; pp. 19–26.
[56]
Ruzzelli, A.G.; O’Hare, G.M.P.; O’Grady, M.J.; Tynan, R. MERLIN: A Synergetic Integration of MAC and Routing Protocol for Distributed Sensor Networks. In Proceedings of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON ’06), Reston, VA, USA, 28–28 September 2006; pp. 266–275.
[57]
Akkaya, K.; Younis, M. An Energy-Aware QoS Routing Protocol for Wireless Sensor Networks. In Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops, Providence, RI, USA, 19–22 May 2003; pp. 710–715.
[58]
Tian, H.; Stankovic, J.A.; Chenyang, L.; Abdelzaher, T. SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks. In Proceedings of the 23rd International Conference on Distributed Computing Systems, Providence, RI, USA, 19–22 May 2003; pp. 46–55.
[59]
Willig, A. Recent and emerging topics in wireless industrial communications: A selection. IEEE Trans. Ind. Inf. 2008, 4, 102–124, doi:10.1109/TII.2008.923194.
[60]
International Organization for Standardization (ISO), Road Vehicles–Controller Area Network; ISO 11898-1:2003, International Organization for Standardization, Geneva, Switzerland, 2003.
[61]
Kerkez, B.; Watteyne, T.; Magliocco, M.; Glaser, S.; Pister, K. Feasibility Analysis of Controller Design for Adaptive Channel Hopping. In Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, Pisa, Italy, 20–22 October 2009; pp. 1–6.
[62]
Goyal, M.; Prakash, S.; Xie, W.; Bashir, Y.; Hosseini, H.; Durresi, A. Evaluating the Impact of Signal to Noise Ratio on IEEE 802.15.4 PHY-Level Packet Loss Rate. In Proceedings of 2010 13th International Conference on Network-Based Information Systems (NBiS), Takayama, Japan, 14–16 September 2010; pp. 279–284.
[63]
Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005.
[64]
Jee-Hye, L.; Myung-Sun, B.; Hyoung-Kyu, S. Efficient MIMO receiving technique in IEEE 802.11n system for enhanced services. IEEE Trans. Consum. Electron. 2007, 53, 344–349, doi:10.1109/TCE.2007.381699.
[65]
IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Stdandard 802.11e-2005 (Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements), 2005.
[66]
Lin, S.; Zhang, J.; Zhou, G.; Gu, L.; Stankovic, J.A.; He, T. ATPC: Adaptive Transmission Power Control for Wireless Sensor Networks. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 19–22 June 2006; pp. 223–236.
[67]
Hackmann, G.; Chipara, O.; Lu, C. Robust Topology Control for Indoor Wireless Sensor Networks. In Proceedings of the 6th ACM Conference on EMBEDDED Network Sensor Systems, Raleigh, NC, USA, 5–7 November 2008; pp. 57–70.
[68]
Haibo, Z.; Soldati, P.; Johansson, M. Optimal Link Scheduling and Channel Assignment for Convergecast in Linear WirelessHART Networks. In Proceedings of the 7th International Symposium on Modeling and Optimization in MobileAd Hocand Wireless Networks (WiOPT 2009), Seoul, Korea, 23–27 June 2009; pp. 1–8.
[69]
Soldati, P.; Zhang, H.; Johansson, M. Deadline-Constrained Transmission Scheduling and Data Evacuation in Wirelesshart Networks. In Proceedings of 10th European Control Conference (ECC), Budapest, Hungary, 23–26 August 2009.
[70]
Zhang, H.; Soldati, P.; Johansson, M. Efficient Link Scheduling and Channel Hopping for Convergecast in Wirelesshart Networks; Techchnical Report; School of Electrical Engineering, Royal Institute of Technology (KTH): Stockholm, Sweden, 2009.
[71]
Ahmad, M.R.; Dutkiewicz, E.; Xiaojing, H. BER-Delay Characteristics Analysis of IEEE 802.15.4 Wireless Sensor Networks with Cooperative MIMO. In Proceedings of Asia-Pacific Conference on Applied Electromagnetics (APACE 2007), Melaka, Malaysia, 4–6 December 2007; pp. 1–5.