全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Database-driven Decision Support System: Customized Mortality Prediction

DOI: 10.3390/jpm2040138

Keywords: decision support, intensive care, clinical database, MIMIC, informatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

We hypothesize that local customized modeling will provide more accurate mortality prediction than the current standard approach using existing scoring systems. Mortality prediction models were developed for two subsets of patients in Multi-parameter Intelligent Monitoring for Intensive Care (MIMIC), a public de-identified ICU database, and for the subset of patients >80 years old in a cardiac surgical patient registry. Logistic regression (LR), Bayesian network (BN) and artificial neural network (ANN) were employed. The best-fitted models were tested on the remaining unseen data and compared to either the Simplified Acute Physiology Score (SAPS) for the ICU patients, or the EuroSCORE for the cardiac surgery patients. Local customized mortality prediction models performed better as compared to the corresponding current standard severity scoring system for all three subsets of patients: patients with acute kidney injury (AUC = 0.875 for ANN, vs. SAPS, AUC = 0.642), patients with subarachnoid hemorrhage (AUC = 0.958 for BN, vs. SAPS, AUC = 0.84), and elderly patients undergoing open heart surgery (AUC = 0.94 for ANN, vs. EuroSCORE, AUC = 0.648). Rather than developing models with good external validity by including a heterogeneous patient population, an alternative approach would be to build models for specific patient subsets using one’s local database.

References

[1]  Celi, L.A.; Tang, R.J.; Villarroel, M.C.; Davidzon, G.; Lester, W.T.; Chueh, H.C. A clinical database-driven approach to decision support: Predicting mortality among patients with acute kidney injury. J. Healthcare Eng. 2011, 2, 97–109, doi:10.1260/2040-2295.2.1.97.
[2]  Saeed, M.; Villarroel, M.; Reisner, A.T.; Clifford, G.; Lehman, L.W.; Moody, G.; Heldt, T.; Kyaw, T.H.; Moody, B.; Mark, R.G. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database. Crit. Care Med. 2011, 39, 952–960, doi:10.1097/CCM.0b013e31820a92c6.
[3]  Le Gall, J.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963, doi:10.1001/jama.1993.03510240069035.
[4]  Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2011; pp. 311–314.
[5]  Celi, L.A.; Hinske, L.C.; Alterovitz, G.; Szolovits, P. Artificial intelligence to predict fluid requirement in the ICU: A proof-of-concept study. Crit. Care 2008, 12.
[6]  Uchino, S.; Kellum, J.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818, doi:10.1001/jama.294.7.813.
[7]  Kolhe, N.; Stevens, P.; Crowe, A.; Lipkin, G.W.; Harrison, D.A. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 h after admission to an adult general critical care unit: Application of predictive models from a secondary analysis of the ICNARC Case Mix Programme Database. Crit. Care 2008, 12, doi:10.1186/cc7003.
[8]  Hop, J.; Rinkel, G.; Algra, A.; van Gijn, J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: A systematic review. Stroke 1997, 28, 660–664, doi:10.1161/01.STR.28.3.660.
[9]  Rosen, D.S.; Macdonald, R.L. Subarachnoid hemorrhage grading scales: A systematic review. Neurocrit. Care 2005, 2, 110–118, doi:10.1385/NCC:2:2:110.
[10]  Roques, F.; Nashef, S.A.M.; Michel, P.; Gauducheau, E.; de Vincentiis, C.; Baudet, E.; Cortina, J.; David, M.; Faichney, A.; Gabrielle, F.; et al. Risk factors and outcome in European cardiac surgery: Analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 1999, 15, 816–823, doi:10.1016/S1010-7940(99)00106-2.
[11]  Collart, F.; Feier, H.; Kerbaul, F.; Mouly-Bandini, A.; Riberi, A.; Mesana, T.G.; Metras, D. Valvular surgery in octogenarians: Operative risk factors, evaluation of Euroscore and long term results. Eur. J. Cardiothorac. Surg. 2005, 27, 276–280, doi:10.1016/j.ejcts.2004.10.041.
[12]  Shanmugam, G.; West, M.; Berg, G. Additive and logistic EuroSCORE performance in high risk patients. Interact. Cardiovasc. Thorac. Surg. 2005, 4, 299–303, doi:10.1510/icvts.2004.104042.
[13]  Patel, P.; Grant, B. Application of mortality prediction systems to individual intensive care units. Intensive Care Med. 1999, 25, 977–982, doi:10.1007/s001340050992.
[14]  Strand, K.; Flaaten, H. Severity scoring in the ICU: A review. Acta Anaesthesiol. Scand. 2008, 52, 467–478, doi:10.1111/j.1399-6576.2008.01586.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133