全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Art of Directly Interfacing Sensors to Microcontrollers

DOI: 10.3390/jlpea2040265

Keywords: capacitive sensor, microcontroller, power consumption, resistive sensor, sensor electronic interface

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reviews the direct connection of sensors to microcontrollers without using any analogue circuit (such as an amplifier or analogue-to-digital converter) in the signal path, thus resulting in a low-cost, lower-power sensor electronic interface. It first discusses the operating principle and explains how resistive and capacitive sensors with different topologies ( i.e., single, differential and bridge type) can be directly connected to a microcontroller to build the so-called direct interface circuit. It then shows some applications of the proposed circuits using commercial devices and discusses their performance. Finally, it deals with the power consumption and proposes some design guidelines to reduce the current consumption of such circuits in active mode.

References

[1]  Pallàs-Areny, R.; Webster, J.G. Sensors and Signal Conditioning, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001.
[2]  Huising, J.H. Smart sensor systems: Why? Where? How? In Smart Sensor Systems; Meijer, G.C.M., Ed.; Wiley: Chichester, UK, 2008; pp. 1–21.
[3]  Reverter, F.; Pallàs-Areny, R. Direct Sensor-to-Microcontroller Interface Circuits. Design and Characterization; Marcombo: Barcelona, Spain, 2005.
[4]  Cox, D. Implementing Ohmmeter/Temperature Sensor; Microchip Technology AN512: Chandler, AZ, USA, 1994.
[5]  Bierl, L. Precise Measurements with the MSP430; Texas Instruments: Dallas, TX, USA, 1996.
[6]  Richey, R. Resistance and Capacitance Meter Using a PIC16C622; Microchip Technology AN611: Chandler, AZ, USA, 1997.
[7]  Dietz, P.H.; Leigh, D.; Yerazunis, W.S. Wireless liquid level sensing for restaurant applications. In Proceedings of The 1st IEEE International Conference on Sensors, Orlando, FL, USA, 12–14 June 2002; pp. 715–719.
[8]  Gaitán-Pitre, J.E.; Gasulla, M.; Pallàs-Areny, R. Analysis of a direct interface circuit for capacitive sensors. IEEE Trans. Instrum. Meas. 2009, 58, 2931–2937, doi:10.1109/TIM.2009.2016782.
[9]  Reverter, F.; Gasulla, M.; Pallàs-Areny, R. Analysis of power-supply interference effects on direct sensor-to-microcontroller interfaces. IEEE Trans. Instrum. Meas. 2007, 56, 171–177, doi:10.1109/TIM.2006.887401.
[10]  Reverter, F.; Pallàs-Areny, R. Effective number of resolution bits in direct sensor-to-microcontroller interfaces. Meas. Sci. Technol. 2004, 15, 2157–2162, doi:10.1088/0957-0233/15/10/028.
[11]  Reverter, F.; Jordana, J.; Gasulla, M.; Pallàs-Areny, R. Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces. Sens. Actuators A 2005, 121, 78–87, doi:10.1016/j.sna.2005.01.010.
[12]  Interface electronics and measurement techniques for smart sensor systems. In Smart Sensor Systems; Meijer, G.C.M, Ed.; Wiley: Chichester, UK, 2008; pp. 23–54.
[13]  Reverter, F.; Casas, ò. Interfacing differential resistive sensors to microcontrollers: a direct approach. IEEE Trans. Instrum. Meas. 2009, 58, 3405–3410, doi:10.1109/TIM.2009.2017651.
[14]  Sifuentes, E.; Casas, ò.; Reverter, F.; Pallàs-Areny, R. Direct interface circuit to linearise resistive sensor bridges. Sens. Actuators A 2008, 147, 210–215, doi:10.1016/j.sna.2008.05.023.
[15]  Reverter, F.; Horak, G.; Bilas, V.; Gasulla, M. Novel and low-cost temperature compensation technique for piezoresistive pressure sensors. In Proceedings of XIX IMEKO World Congress, Lisbon, Portugal, 6–11 September 2009; pp. 2084–2087.
[16]  Jordana, J.; Pallàs-Areny, R. A simple, efficient interface circuit for piezoresistive pressure sensors. Sens. Actuators A 2006, 127, 69–73, doi:10.1016/j.sna.2005.11.013.
[17]  Yurish, S.Y. A simple and universal resistive-bridge sensors interface. Sens. Transducers J. 2011, 10, 46–59.
[18]  Vidal-Verdú, F.; Oballe-Peinado, O.; Sánchez-Durán, J.A.; Castellanos-Ramos, J.; Navas-González, R. Three realizations and comparison of hardware for piezoresistive tactile sensors. Sensors 2011, 11, 3249–3266, doi:10.3390/s110303249.
[19]  Courbat, J.; Briand, D.; Yue, L.; Raible, S.; Rooij, N.F. Drop-coated metal-oxide gas sensor on polyimide foil with reduced power consumption for wireless applications. Sens. Actuators B 2012, 161, 862–868, doi:10.1016/j.snb.2011.11.050.
[20]  Sifuentes, E. Autonomous Sensor for the Static Detection of Vehicles. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2009.
[21]  Mohan, N.M.; Kumar, V.J. A novel signal conditioning circuit for push-pull-type resistive transducers. Meas. Sci. Technol. 2005, 16, 1848–1852, doi:10.1088/0957-0233/16/9/018.
[22]  Van der Goes, F. Low-Cost Smart Sensor Interfacing. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1996.
[23]  Reverter, F.; Casas, ò. Direct interface circuit for capacitive humidity sensors. Sens. Actuators A 2008, 143, 315–322, doi:10.1016/j.sna.2007.11.018.
[24]  Reverter, F.; Casas, ò. Interfacing differential capacitive sensors to microcontrollers: a direct approach. IEEE Trans. Instrum. Meas. 2010, 59, 2763–2769, doi:10.1109/TIM.2009.2036500.
[25]  Reverter, F.; Casas, ò. A microcontroller-based interface circuit for lossy capacitive sensors. Meas. Sci. Technol. 2010, doi:10.1088/0957-0233/21/6/065203.
[26]  Reverter, F.; Casas, ò. Direct interface circuit for differential capacitive sensors. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Victoria, Canada, 12–15 May 2008; pp. 1609–1612.
[27]  Pelegrí-Sebastiá, J.; García-Breijo, E.; Ibá?ez, J.; Sogorb, T.; Laguarda-Miro, N.; Garrigues, J. Low-cost capacitive humidity sensor for application within flexible RFID labels based on microcontroller systems. IEEE Trans. Instrum. Meas. 2012, 61, 545–553, doi:10.1109/TIM.2011.2164860.
[28]  Bracke, W.; Merken, P.; Puers, R.; Van Hoof, C. Ultra-low-power interface chip for autonomous capacitive sensor systems. IEEE Trans. Circuits Syst. I 2007, 54, 130–140, doi:10.1109/TCSI.2006.887978.
[29]  Reverter, F. Power consumption in direct interface circuits. IEEE Trans. Instrum. Meas. 2012, doi:10.1109/TIM.2012.2216473.
[30]  Sifuentes, E.; Casas, ò.; Pallàs-Areny, R. Wireless magnetic sensor node for vehicle detection with optical wake-up. IEEE Sens. J. 2011, 11, 1669–1676, doi:10.1109/JSEN.2010.2103937.
[31]  Bengtsson, L. Direct analog-to-microcontroller interfacing. Sens. Actuators A 2012, 179, 105–113, doi:10.1016/j.sna.2012.02.048.
[32]  Stojanovic, R.; Karadaglic, D. A LED-LED-based photoplethysmography sensor. Physiol. Meas. 2007, 28, N19–N27, doi:10.1088/0967-3334/28/6/N01.
[33]  Czaja, Z.A. microcontroller system for measurement of three independent components in impedance sensors using a single square pulse. Sens. Actuators A 2012, 173, 284–292, doi:10.1016/j.sna.2011.10.018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133