|
Power Scalable Radio Receiver Design Based on Signal and Interference ConditionDOI: 10.3390/jlpea2040242 Keywords: adaptive receiver, low power, receiver algorithms, packet based communication, sampling clock, word-length Abstract: A low power adaptive digital baseband architecture is presented for a low-IF receiver of IEEE 802.15.4-2006. The digital section’s sampling frequency and bit width are used as knobs to reduce the power under favorable signal and interference scenarios, thus recovering the design margins introduced to handle the worst case conditions. We show that in a 0.13 μm CMOS technology, for an adaptive digital baseband section of the receiver, power saving can be up to 85% (0.49mW against 3.3mW) in favorable interference and signal conditions. The proposed concepts in the design are tested using a receiver test setup where the design is hosted on a FPGA.
|