全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2012 

Survival of the Fittest: Overcoming Oxidative Stress at the Extremes of Acid, Heat and Metal

DOI: 10.3390/life2030229

Keywords: archaea, ecology, oxidative stress, metals, natural habitats

Full-Text   Cite this paper   Add to My Lib

Abstract:

The habitat of metal respiring acidothermophilic lithoautotrophs is perhaps the most oxidizing environment yet identified. Geothermal heat, sulfuric acid and transition metals contribute both individually and synergistically under aerobic conditions to create this niche. Sulfuric acid and metals originating from sulfidic ores catalyze oxidative reactions attacking microbial cell surfaces including lipids, proteins and glycosyl groups. Sulfuric acid also promotes hydrocarbon dehydration contributing to the formation of black “burnt” carbon. Oxidative reactions leading to abstraction of electrons is further impacted by heat through an increase in the proportion of reactant molecules with sufficient energy to react. Collectively these factors and particularly those related to metals must be overcome by thermoacidophilic lithoautotrophs in order for them to survive and proliferate. The necessary mechanisms to achieve this goal are largely unknown however mechanistics insights have been gained through genomic studies. This review focuses on the specific role of metals in this extreme environment with an emphasis on resistance mechanisms in Archaea.

References

[1]  Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf.?2000, 45, 198–207.
[2]  Haferburg, G.; Kothe, E. Microbes and metals: Interactions in the environment. J. Basic Microbiol.?2007, 47, 453–467, doi:10.1002/jobm.200700275.
[3]  Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev.?2003, 27, 197–213, doi:10.1016/S0168-6445(03)00049-4.
[4]  Silver, S.; Phung, L.T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol.?1996, 50, 753–789, doi:10.1146/annurev.micro.50.1.753.
[5]  Stolz, J.F.; Basu, P.; Santini, J.M.; Oremland, R.S. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol.?2006, 60, 107–130, doi:10.1146/annurev.micro.60.080805.142053.
[6]  Hallas, L.E.; Thayer, J.S.; Cooney, J.J. Factors affecting the toxic effect of tin on estuarine microorganisms. Appl. Environ. Microbiol.?1982, 44, 193–197.
[7]  Spain, A. Implications of microbial heavy metal tolerance in the environment. Rev. Undergrad. Res.?2003, 2, 1–6.
[8]  Nies, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev.?2003, 27, 313–339, doi:10.1016/S0168-6445(03)00048-2.
[9]  Morin, I.; Cuillel, M.; Lowe, J.; Crouzy, S.; Guillain, F.; Mintz, E. Cd2+- or Hg2+-binding proteins can replace the Cu+-chaperone Atx1 in delivering Cu+ to the secretory pathway in yeast. FEBS Lett.?2005, 579, 1117–1123.
[10]  Tottey, S.; Harvie, D.R.; Robinson, N.J. Understanding how cells allocate metals using metal sensors and metallochaperones. Acc. Chem. Res.?2005, 38, 775–783.
[11]  Tanaka, Y.; Tsumoto, K.; Nakanishi, T.; Yasutake, Y.; Sakai, N.; Yao, M.; Tanaka, I.; Kumagai, I. Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: The case of Pyrococcus horikoshii CutA. FEBS Lett.?2004, 556, 167–174.
[12]  Yang, J.; Li, Q.; Yang, H.; Yan, L.; Yang, L.; Yu, L. Overexpression of human CUTA isoform2 enhances the cytotoxicity of copper to HeLa cells. Acta Biochim. Pol.?2008, 55, 411–415.
[13]  Remonsellez, F.; Orell, A.; Jerez, C.A. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism. Microbiology?2006, 152, 59–66.
[14]  Seufferheld, M.J.; Alvarez, H.M.; Farias, M.E. Role of polyphosphates in microbial adaptation to extreme environments. Appl. Environ. Microbiol.?2008, 74, 5867–5874.
[15]  Nemergut, D.R.; Martin, A.P.; Schmidt, S.K. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl. Environ. Microbiol.?2004, 70, 1160–1168, doi:10.1128/AEM.70.2.1160-1168.2004.
[16]  Ghosh, M.; Rosen, B. Microbial Resistance Mechanisms for Heavy Metals and Metalloids. In Heavy Metals in the Environment; Sakar, B., Ed.; Marcel Dekker, Inc: New York, NY, USA, 2002; pp. 531–548.
[17]  Pearson, R.G. Hard and soft acids and bases. J. Amer. Chem. Soc.?1963, 85, 3533–3539, doi:10.1021/ja00905a001.
[18]  Wackett, L.P.; Dodge, A.G.; Ellis, L.B. Microbial genomics and the periodic table. Appl. Environ. Microbiol.?2004, 70, 647–655, doi:10.1128/AEM.70.2.647-655.2004.
[19]  Pikuta, E.V.; Hoover, R.B.; Tang, J. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol.?2007, 33, 183–209.
[20]  DeLong, E.F.; Wu, K.Y.; Prezelin, B.B.; Jovine, R.V. High abundance of Archaea in Antarctic marine picoplankton. Nature?1994, 371, 695–697.
[21]  Sievert, S.M.; Ziebis, W.; Kuever, J.; Sahm, K. Relative abundance of Archaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. Microbiology?2000, 146, 1287–1293.
[22]  Schrenk, M.O.; Kelley, D.S.; Delaney, J.R.; Baross, J.A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol.?2003, 69, 3580–3592, doi:10.1128/AEM.69.6.3580-3592.2003.
[23]  Callieri, C.; Corno, G.; Caravati, E.; Rasconi, S.; Contesini, M.; Bertoni, R. Bacteria, archaea, and crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl. Environ. Microbiol.?2009, 75, 7298–7300.
[24]  Simbahan, J.; Kurth, E.; Schelert, J.; Dillman, A.; Moriyama, E.; Jovanovich, S.; Blum, P. Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl. Environ. Microbiol.?2005, 71, 8836–8845.
[25]  Eilmus, S.; Rosch, C.; Bothe, H. Prokaryotic life in a potash-polluted marsh with emphasis on N-metabolizing microorganisms. Environ. Pollut.?2007, 146, 478–491, doi:10.1016/j.envpol.2006.07.008.
[26]  Borneman, J.; Triplett, E.W. Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol.?1997, 63, 2647–2653.
[27]  Buckley, D.H.; Graber, J.R.; Schmidt, T.M. Phylogenetic analysis of nonthermophilic members of the kingdom crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol.?1998, 64, 4333–4339.
[28]  Bruneel, O.; Pascault, N.; Egal, M.; Bancon-Montigny, C.; Goni-Urriza, M.S.; Elbaz-Poulichet, F.; Personne, J.C.; Duran, R. Archaeal diversity in a Fe-As rich acid mine drainage at Carnoules (France). Extremophiles?2008, 12, 563–571.
[29]  Edwards, K.J.; Bond, P.L.; Gihring, T.M.; Banfield, J.F. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science?2000, 287, 1796–1799.
[30]  Sandaa, R.A.; Enger, O.; Torsvik, V. Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl. Environ. Microbiol.?1999, 65, 3293–3297.
[31]  Stiller, M.; Sigg, L. Heavy Metals in the Dead Sea and thier coprecipitation with halite. Hydrobiologia?1990, 197, 23–33, doi:10.1007/BF00026936.
[32]  Wang, G.; Kennedy, S.P.; Fasiludeen, S.; Rensing, C.; DasSarma, S. Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J. Bacteriol.?2004, 186, 3187–3194, doi:10.1128/JB.186.10.3187-3194.2004.
[33]  Kaur, A.; Pan, M.; Meislin, M.; Facciotti, M.T.; El-Gewely, R.; Baliga, N.S. A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res.?2006, 16, 841–854.
[34]  Biddle, J.F.; Fitz-Gibbon, S.; Schuster, S.C.; Brenchley, J.E.; House, C.H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl. Acad. Sci. USA?2008, 105, 10583–10588.
[35]  Michalke, K.; Wickenheiser, E.B.; Mehring, M.; Hirner, A.V.; Hensel, R. Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl. Environ. Microbiol.?2000, 66, 2791–2796.
[36]  Kim, B.K.; Pihl, T.D.; Reeve, J.N.; Daniels, L. Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. J. Bacteriol.?1995, 177, 7178–7185.
[37]  Mori, K.; Hatsu, M.; Kimura, R.; Takamizawa, K. Effect of heavy metals on the growth of a methanogen in pure culture and coculture with a sulfate-reducing bacterium. J. Biosci. Bioeng.?2000, 90, 260–265.
[38]  Meyer, J.; Michalke, K.; Kouril, T.; Hensel, R. Volatilisation of metals and metalloids: An inherent feature of methanoarchaea? Syst. Appl. Microbiol.?2008, 31, 81–87, doi:10.1016/j.syapm.2008.02.001.
[39]  Qin, J.; Rosen, B.P.; Zhang, Y.; Wang, G.; Franke, S.; Rensing, C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc. Natl. Acad. Sci. USA?2006, 103, 2075–2080.
[40]  Amo, T.; Paje, M.L.; Inagaki, A.; Ezaki, S.; Atomi, H.; Imanaka, T. Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea?2002, 1, 113–421.
[41]  Brock, T.D.; Brock, K.M.; Belly, R.T.; Weiss, R.L. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol.?1972, 84, 54–68, doi:10.1007/BF00408082.
[42]  Fuchs, T.; Huber, H.; Teiner, K.; Burggraf, S.; Stetter, K.O. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst. Appl. Microbiol.?1995, 18, 560–566.
[43]  Huber, G.; Spinnler, C.; Gambacorta, A.; Stetter, K.O. Metallosphaera sedula gen. and sp. nov. epresents a new genus of aerobic, metal-mobilizing thermoacidophilic archaebacteria. Syst. Appl. Microbiol.?1989, 12, 38–47, doi:10.1016/S0723-2020(89)80038-4.
[44]  Schleper, C.; Puehler, G.; Holz, I.; Gambacorta, A.; Janekovic, D.; Santarius, U.; Klenk, H.P.; Zillig, W. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol.?1995, 177, 7050–7059.
[45]  Arnorsson, A. The distribution of some trace elements in thermal waters in Iceland. Geothermics?1970, 2, 542–546, doi:10.1016/0375-6505(70)90053-2.
[46]  Edgcomb, V.P.; Molyneaux, S.J.; Saito, M.A.; Lloyd, K.; Boer, S.; Wirsen, C.O.; Atkins, M.S.; Teske, A. Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea. Appl. Environ. Microbiol.?2004, 70, 2551–2555, doi:10.1128/AEM.70.4.2551-2555.2004.
[47]  Spear, J.R.; Walker, J.J.; McCollom, T.M.; Pace, N.R. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl. Acad. Sci. USA?2005, 102, 2555–2560, doi:10.1073/pnas.0409574102.
[48]  Weissberg, W.G. Gold-silver ore-grade precipitates from New Zealand thermal waters. Econ. Geology?1969, 64, 95, doi:10.2113/gsecongeo.64.1.95.
[49]  Baker-Austin, C.; Dopson, M.; Wexler, M.; Sawers, R.G.; Bond, P.L. Molecular insight into extreme copper resistance in the extremophilic archaeon 'Ferroplasma acidarmanus' Fer1. Microbiology?2005, 151, 2637–2646, doi:10.1099/mic.0.28076-0.
[50]  Dixit, V.; Bini, E.; Drozda, M.; Blum, P. Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus. Antimicrob. Agents Chemother.?2004, 48, 1993–1999, doi:10.1128/AAC.48.6.1993-1999.2004.
[51]  Schelert, J.; Dixit, V.; Hoang, V.; Simbahan, J.; Drozda, M.; Blum, P. Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J. Bacteriol.?2004, 186, 427–437, doi:10.1128/JB.186.2.427-437.2004.
[52]  Schelert, J.; Drozda, M.; Dixit, V.; Dillman, A.; Blum, P. Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J. Bacteriol.?2006, 188, 7141–7150, doi:10.1128/JB.00558-06.
[53]  Nieto, J.J.; Ventosa, A.; Ruiz-Berraquero, F. Susceptibility of halobacteria to heavy metals. Appl. Environ. Microbiol.?1987, 53, 1199–1202.
[54]  Dopson, M.; Baker-Austin, C.; Koppineedi, P.R.; Bond, P.L. Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology?2003, 149, 1959–1970, doi:10.1099/mic.0.26296-0.
[55]  Grogan, D.W. Phenotypic characterization of the archaebacterial genus Sulfolobus: Comparison of five wild-type strains. J. Bacteriol.?1989, 171, 6710–6719.
[56]  Huber, G.; Stetter, K.O. Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizer. Syst. Appl. Microbiol.?1991, 14, 372–378, doi:10.1016/S0723-2020(11)80312-7.
[57]  Kim, B.K.; de Macario, E.C.; Nolling, J.; Daniels, L. Isolation and characterization of a copper-resistant methanogen from a copper-mining soil sample. Appl. Environ. Microbiol.?1996, 62, 2629–2635.
[58]  Baker-Austin, C.; Dopson, M.; Wexler, M.; Sawers, R.G.; Stemmler, A.; Rosen, B.P.; Bond, P.L. Extreme arsenic resistance by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1. Extremophiles?2007, 11, 425–434.
[59]  Dopson, M.; Baker-Austin, C.; Hind, A.; Bowman, J.P.; Bond, P.L. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl. Environ. Microbiol.?2004, 70, 2079–2088.
[60]  Abskharon, R.N.; Hassan, S.H.; Gad El-Rab, S.M.; Shoreit, A.A. Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt. Bull. Environ Contam. Toxicol.?2008, 81, 309–315.
[61]  Kaur, S.; Kamli, M.R.; Ali, A. Diversity of arsenate reductase genes (arsC Genes) from arsenic-resistant environmental isolates of E. coli. Curr. Microbiol.?2009, 59, 288–294, doi:10.1007/s00284-009-9432-9.
[62]  Li, X.Z.; Nikaido, H.; Williams, K.E. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol.?1997, 179, 6127–6132.
[63]  Maezato, Y.; Blum, P. Unpublished work, University of Nebraska, Lincoln, NE, USA, 2012.
[64]  Chatziefthimiou, A.D.; Crespo-Medina, M.; Wang, Y.; Vetriani, C.; Barkay, T. The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles?2007, 11, 469–479, doi:10.1007/s00792-007-0065-2.
[65]  Vetriani, C.; Chew, Y.S.; Miller, S.M.; Yagi, J.; Coombs, J.; Lutz, R.A.; Barkay, T. Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Appl. Environ. Microbiol.?2005, 71, 220–226, doi:10.1128/AEM.71.1.220-226.2005.
[66]  Almeida, W.I.; Vieira, R.P.; Cardoso, A.M.; Silveira, C.B.; Costa, R.G.; Gonzalez, A.M.; Paranhos, R.; Medeiros, J.A.; Freitas, F.A.; Albano, R.M.; Martins, O.B. Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay. Extremophiles?2009, 13, 263–271, doi:10.1007/s00792-008-0214-2.
[67]  Xie, X.; Xiao, S.; He, Z.; Liu, J.; Qiu, G. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. J. Appl. Microbiol.?2007, 103, 1227–1238, doi:10.1111/j.1365-2672.2007.03382.x.
[68]  Deigweiher, K.; Drell, T.L.T.; Prutsch, A.; Scheidig, A.J.; Lubben, M. Expression, isolation, and crystallization of the catalytic domain of CopB, a putative copper transporting ATPase from the thermoacidophilic archaeon Sulfolobus solfataricus. J. Bioenerg. Biomembr.?2004, 36, 151–159.
[69]  Ettema, T.J.; Brinkman, A.B.; Lamers, P.P.; Kornet, N.G.; de Vos, W.M.; van der Oost, J. Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology?2006, 152, 1969–1979.
[70]  Villafane, A.A.; Voskoboynik, Y.; Cuebas, M.; Ruhl, I.; Bini, E. Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. Biochem. Biophys. Res. Commun.?2009, 385, 67–71.
[71]  Daulton, T.L.; Little, B.J.; Lowe, K.; Jones-Meehan, J. In Situ Environmental Cell-Transmission Electron Microscopy Study of Microbial Reduction of Chromium(VI) Using Electron Energy Loss Spectroscopy. Microsc. Microanal.?2001, 7, 470–485.
[72]  Kamaludeen, S.P.; Arunkumar, K.R.; Avudainayagam, S.; Ramasamy, K. Bioremediation of chromium contaminated environments. Indian J. Exp. Biol.?2003, 41, 972–985.
[73]  Opperman, D.J.; van Heerden, E. Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J. Appl. Microbiol.?2007, 103, 1907–1913.
[74]  Ramirez-Diaz, M.I.; Diaz-Perez, C.; Vargas, E.; Riveros-Rosas, H.; Campos-Garcia, J.; Cervantes, C. Mechanisms of bacterial resistance to chromium compounds. Biometals?2008, 21, 321–332, doi:10.1007/s10534-007-9121-8.
[75]  Tandukar, M.; Huber, S.J.; Onodera, T.; Pavlostathis, S.G. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ. Sci. Technol.?2009, 43, 8159–8165, doi:10.1021/es9014184.
[76]  Cervantes, C.; Campos-Garcia, J.; Devars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Torres-Guzman, J.C.; Moreno-Sanchez, R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev.?2001, 25, 335–347.
[77]  Barak, Y.; Ackerley, D.F.; Dodge, C.J.; Banwari, L.; Alex, C.; Francis, A.J.; Matin, A. Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl. Environ. Microbiol.?2006, 72, 7074–7082.
[78]  Kashefi, K.; Moskowitz, B.M.; Lovley, D.R. Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum. Geobiology?2008, 6, 147–154, doi:10.1111/j.1472-4669.2007.00142.x.
[79]  Finneran, K.T.; Housewright, M.E.; Lovley, D.R. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol.?2002, 4, 510–516.
[80]  Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R. Microbial reduction of uranium. Nature?1991, 350, 413–415.
[81]  Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol.?2004, 49, 219–286.
[82]  Wall, J.D.; Krumholz, L.R. Uranium reduction. Annu. Rev. Microbiol.?2006, 60, 149–166, doi:10.1146/annurev.micro.59.030804.121357.
[83]  Wilkins, M.J.; Verberkmoes, N.C.; Williams, K.H.; Callister, S.J.; Mouser, P.J.; Elifantz, H.; N'Guessan, A,L.; Thomas, B.C.; Nicora, C.D.; Shah, M.B.; et al. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Appl. Environ. Microbiol.?2009, 75, 6591–6599.
[84]  Baker, B.J.; Tyson, G.W.; Webb, R.I.; Flanagan, J.; Hugenholtz, P.; Allen, E.E.; Banfield, J.F. Lineages of acidophilic archaea revealed by community genomic analysis. Science?2006, 314, 1933–1935.
[85]  Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol.?2002, 56, 65–91, doi:10.1146/annurev.micro.56.012302.161052.
[86]  Sowers, K.R.; Blum, P.H.; DasSarma, S. Gene Transfer in Archaea. In Methods for General and Molecular Microbiology, 3rd ed.; Reddy, C.A., Beveridge, T.J., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Eds.; American Society for Microbiology: Honolulu, HI, USA, 2007; pp. 800–824.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133