全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Land  2012 

Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed

DOI: 10.3390/land1010005

Keywords: land use change, water quality, multi-layer approach, management decision making, watershed-level, coastal zone

Full-Text   Cite this paper   Add to My Lib

Abstract:

In order to address the challenges in coastal regions, there is the need to understand the extent and impacts of past changes and their implications for future management. Land use data and remotely-sensed imagery are often used to provide insights into these changes. Often, however, existing land use data are inconsistent, thus differences observed through their analyses could also be attributable to error. The use of multiple layers of data, in addition and as related to basic land use layers, has been suggested in the literature as a method to mitigate such error. This study used existing land use data, population, stream flow, climate and water quality data with a view to determining what information could be discerned from multi-layer analyses and whether or how it could be used in watershed-level management decision making. Results showed that all the datasets provided useful, but not necessarily complemental, insights into spatial and temporal changes occurring in the watershed. The information obtained did, however, provide a broader perspective on watershed dynamics, which would be useful for watershed-level decision making. Overall, the multi-layer approach was found suitable in the absence of consistent land use data, provided results were interpreted in context, considering the historical perspective and with a working knowledge of the watershed.

References

[1]  USCOP. An Ocean Blueprint for the 21st Century. Final Report; US Commission on Ocean Policy: Washington, DC, USA, 2004; p. 676.
[2]  NAP. Priorities for Coastal Ecosystem Science; The National Academy of Sciences, National Academy Press: Washington, D.C. USA, 1995.
[3]  Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107.
[4]  Burke, L.; Kura, Y.; Kassem, K.; Revenga, C.; Spalding, M.; McAllister, D. Pilot Analysis of Global Ecosystems: Coastal Ecosystems; World Resources Institute: Washington, DC, USA, 2000; p. 93. Available online: http://www.wri.org/publication/pilot-analysis-global-ecosystems-coastal-ecosystems (accessed on 12 November 2012).
[5]  UNDSD. Chapter 17: Protection of the Oceans, all Kinds of Seas, Including Enclosed and Semi-Enclosed Seas, and Coastal Areas and the Protection, Rational Use and Development of Their Living Resources. In Proceedings of United Nations Conference on Environment and Development, Rio de Janerio, Brazil, 3–14 June 1992; p. 351.
[6]  Clark, G.E.; Moser, S.C.; Ratick, S.J.; Dow, K.; Meyer, W.B.; Emani, S.; Jin, W.; Kasperson, J.X.; Kasperson, R.E.; Schwarz, H.E. Assessing the vulnerability of coastal communities to extreme storms: The case of Revere, MA., USA. Mitig. Adapt. Strategies Global Change 1998, 3, 59–82.
[7]  Gitau, M.W.; Chaubey, I.; Gbur, E.; Pennington, J.H.; Gorham, B. Impacts of land-use change and best management practice implementation in a Conservation Effects Assessment Project watershed: Northwest Arkansas. J. Soil Water Conserv. 2010, 65, 353–368, doi:10.2489/jswc.65.6.353.
[8]  Deroin, J.P.; Téreygeol, F.; Heckes, J. Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions—Case study from Jabali, Yemen. J. Archaeol. Sci. 2011, 38, 101–114, doi:10.1016/j.jas.2010.08.015.
[9]  Wang, J.; Cheng, Q.; Chen, J. A GIS and remote sensing-based analysis of land use change using the asymmetric relation analysis method: A case study from the City of Hangzhou, China. Math. Geosci. 2011, 43, 435–453.
[10]  Antrop, M.; Eetvelde, V.V. Holistic aspects of suburban landscapes: Visual image interpretation and landscape metrics. Landsc. Urban Plan. 2000, 50, 43–58, doi:10.1016/S0169-2046(00)00079-7.
[11]  Laliberte, A.S.; Rango, A.; Havstad, K.M.; Paris, J.F.; Beck, R.F.; McNeely, R.; Gonzalez, A.L. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sens. Environ. 2004, 93, 198–210, doi:10.1016/j.rse.2004.07.011.
[12]  Rindfuss, R.R.; Walsh, S.J.; Turner, B.L., II; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981.
[13]  Zhou, W.; Troy, A.; Grove, M. Object-based land cover classification and change analysis in the Baltimore Metropolitan area using multitemporal high resolution remote sensing data. Sensors 2008, 8, 1613–1636.
[14]  Morgan, J.L.; Gergel, S.E. Quantifying historic landscape heterogeneity from aerial photographs using object-based analysis. Landscape Ecol. 2010, 25, 985–998, doi:10.1007/s10980-010-9474-1.
[15]  Spaulding, B.; Stanwicks, S. Developing a Geographic Information System Index for Historical Aerial Photographs; UCCGIA Papers and Proceedings; Paper 3; Unversity of Connecticut: Storrs, CT, USA, 2007. Available online: http://digitalcommons.uconn.edu/uccgia_papers/3 (accessed on 12 November 2012).
[16]  Pontius, R.G.J.; Shusas, E.; McEachem, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268, doi:10.1016/j.agee.2003.09.008.
[17]  Paegelow, M.; Olmedo, M.T.C. Possibilities and limits of prospective GIS land cover modelling-a compared case study: Garrotxes (France) and Alta Alpujarra Granadina (Spain). Int. J. Geogr. Inf. Sci. 2005, 19, 697–722, doi:10.1080/13658810500076443.
[18]  Pontius, R.G.J.; Lippitt, C.D. Can error explain map differences over time? Cartogr. Geogr. Inf. Sci. 2006, 33, 159–171, doi:10.1559/152304006777681706.
[19]  Veldkamp, A. Investigating land dynamics: future research perspectives. J. Land Use Sci. 2009, 4, 5–14, doi:10.1080/17474230802645592.
[20]  FDEP. Water Quality Assessment Report: Caloosahatchee; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2005; p. 223.
[21]  Bailey, N.; Magley, W.; Mandrup-Poulsen, J.; O’Donnell, K.; Peets, R. Nutrient TMDL for the Caloosahatchee Estuary (WBIDs 3240A, 3240B, and 3240C). Final TMDL Report; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2009.
[22]  Caloosahatchee River Wateshed Protection Plan; South Florida Water Management District, Florida Department of Environmental Protection, Florida Department of Agriculture and Consumer Services: Tallahassee, FL, USA, 2009; p. 730.
[23]  FDEP. Caloosahatchee River Watershed, Ft. Myers, Cape Coral, Clewiston- Florida’s Water, Ours to Protect; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2010. Available online: http://www.protectingourwater.org/watersheds/map/caloosahatchee (last accessed 12/11/2012).
[24]  FGDL. Statewide Water Management District Land Use; Florida Geographic Data Library: Gainesville, FL, USA, 2007.
[25]  Xiong, L.H.; Guo, S.L. Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrol. Sci. 2004, 49, 99–112, doi:10.1623/hysj.49.1.99.53998.
[26]  Konrad, C.P.; Booth, D.B. Hydrologic Trends Associated with Urban Development for Selected Streams in the Puget Sound Basin, Western Washington; Water-Resources Investigations Report 02-4040; US Geological Survey: Tacoma, WA, USA, 2002; p. 48.
[27]  Kundzewicz, Z.W.; Robson, A.J. Change detection in hydrological records—A review of the methodology. Hydrol. Sci. 2004, 49, 7–19, doi:10.1623/hysj.49.1.7.53993.
[28]  Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271, doi:10.1016/S0022-1694(01)00594-7.
[29]  Karpouzos, D.K.; Kavalieratou, S.; Babajimopoulos, C. Trend analysis of precipitation data in Pierra Region (Greece). European Water 2010, 30, 31–40.
[30]  McGilchrist, C.A.; Woodyer, K.D. Note on a Distribution-free CUSUM Techniq. Technometrics 1975, 17, 321–325, doi:10.1080/00401706.1975.10489335.
[31]  SAS Institute Inc. JMP Statistics and Graphics Guide; SAS Institute Inc.: Cary, NC, USA, 2007.
[32]  FDEP. Rule Chapter: 62-303- Identification of impaired surface waters; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2010. Available online: http://www.dep.state.fl.us/water/watersheds/assessment/index.htm (last acessed 12 November 2012).
[33]  FGDL. Water Body Identification Numbers (WBID) for the State of Florida; Florida Geographic Data Library Documentation; FGDL: Gainesville, FL, USA, 2010.
[34]  Flaig, E.G.; Capece, J. Water Use and Runoff in the Caloosahatchee Watershed. In Proceedings of The Charlotte Harbor Public Conference and Technical Symposium, Punta Gorda, FL, USA, 15–16 March 1997; Treat, S.F., Ed.; South Floiida Water Management District: West Palm Beach, FL, USA, 1998; pp. 73–80. Charlotte Harbor National Estuary Program Technical Report No. 98-02.
[35]  Lang, M.; Awl, J.; Wilen, B.; McCarty, G.; Galbraith, J. Improved wetland mapping through the use of advanced geospatial technologies. National Wetlands Newsl. 2009, 31, 6–9, 30–31.
[36]  SFWMD. 2009 SFWMD Photointerpretation Key; South Florida Water Management District: West Palm Beach, FL, USA, 2009; p. 730.
[37]  Doering, P.H.; Chamberlain, R.H. Water quality and source of freshwater discharge to the Caloosahatchee Estuary, Florida. J. Am. Water Resour. Assoc. 1999, 35, 793–806, doi:10.1111/j.1752-1688.1999.tb04175.x.
[38]  Pijanowski, B.C.; Brown, D.G.; Shellito, B.A.; Manik, G.A. Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Comput. Environ. Urban Syst. 2002, 26, 553–575, doi:10.1016/S0198-9715(01)00015-1.
[39]  Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2010, 16, 323–343.
[40]  Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Regional Sci. 2008, 42, 11–37, doi:10.1007/s00168-007-0138-2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133