全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of an Interaction Assay between Single-Stranded Nucleic Acids Trapped with Silica Particles and Fluorescent Compounds

DOI: 10.3390/jfb3030601

Keywords: nucleic acid, polynucleotide, assay, fluorescence, cellstain-AO

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biopolymers are easily denatured by heating, a change in pH or chemical substances when they are immobilized on a substrate. To prevent denaturation of biopolymers, we developed a method to trap a polynucleotide on a substrate by hydrogen bonding using silica particles with surfaces modified by aminoalkyl chains ([A-AM silane]/SiO 2). [A-AM silane]/SiO 2 was synthesized by silane coupling reaction of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (A-AM silane) with SiO 2 particles with a diameter of 5 μm at 100 °C for 20 min. The surface chemical structure of [A-AM silane]/SiO 2 was characterized by Fourier transform infrared spectroscopy and molecular orbital calculations. The surface of the silica particles was modified with A-AM silane and primary amine groups were formed. [A-AM silane]/SiO 2 was trapped with single-stranded nucleic acids [(Poly-X; X = A (adenine), G (guanine) and C (cytosine)] in PBS solution at 37 °C for 1 h. The single-stranded nucleic acids were trapped on the surface of the [A-AM silane]/SiO 2 by hydrogen bonding to form conjugated materials. The resulting complexes were further conjugated by derivatives of acridine orange (AO) as fluorescent labels under the same conditions to form [AO:Poly-X:A-AM silane]/SiO 2 complexes. Changes in the fluorescence intensity of these complexes originating from interactions between the single-stranded nucleic acid and aromatic compounds were also evaluated. The change in intensity displayed the order [AO: Poly-G: A-AM silane]/SiO 2 > [AO:Poly-A:A-AM silane]/SiO 2 >> [AO:Poly-C:A-AM silane]/SiO 2. This suggests that the single-stranded nucleic acids conjugated with aminoalkyl chains on the surfaces of SiO 2 particles and the change in fluorescence intensity reflected the molecular interaction between AO and the nucleic-acid base in a polynucleotide.

References

[1]  Ge, H. UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acid Res. 2000, 28, e3, doi:10.1093/nar/28.2.e3.
[2]  Holt, L.J.; Bussow, K.; Walter, G.; Tomlinson, I.M. By-passing selection: Direct screening for antibody-antigen interactions using protein arrays. Nucleic Acid Res. 2000, 28, E72, doi:10.1093/nar/28.15.e72.
[3]  MacBeath, G.; Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763.
[4]  Zhu, H.; Klemic, J.F.; Chang, S.; Bertone, P.; Casamayor, A.; Klemic, K.G.; Smith, D.; Gerstein, M.; Reed, M.A.; Snyder, M. Analysis of yeast protein kinases using protein chips. Nat. Genetics. 2000, 26, 283–289, doi:10.1038/81576.
[5]  Jung, H.J.; Hwang, I.; Kim, B.J.; Min, H.; Yu, H.; Lee, T.G.; Chung, T.D. Selective and direct immobilization of cysteinyl biomolecules by electrochemical cleavage of azo linkage. Langmuir 2010, 26, 15087–15091.
[6]  Byeon, J.-Y.; Limpoco, F.T.; Bailey, R.C. Efficient bioconjugation of protein capture agents to biosensor surfaces using aniline-catalyzed hydrazone ligation. Langmuir 2010, 26, 15430–15435.
[7]  Kimura, T.; Koumoto, K.; Mizu, M.; Sakurai, K.; Shinkai, S. Polysaccharaide-polynucleotide Interaction (XI); Novel separation system of RNAs by using schizophyllan appended column. Chem. Lett. 2002, 12, 1240–1241.
[8]  Isoda, T.; Takahara, N.; Imanaga, H.; Imamura, R.; Hasegawa, S.; Noguchi, K.; Kimura, T. Measurement of non-electrolyte concentrations in an ion solution using a micro-electrode. Sens. Actuators B 2006, 120, 1–9, doi:10.1016/j.snb.2006.01.039.
[9]  Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R.A.; Gerstein, M.; Snyder, M. Global analysis of protein activities using proteome chips. Science 2001, 293, 2101–2105.
[10]  Murata, M.; Nakayama, M.; Irie, H.; Yakabe, K.; Fukuma, K.; Katayama, Y.; Maeda, M. Novel biosensor for the rapid measurement of estrogen based on a ligand-receptor interaction. Anal. Sci. 2001, 17, 387–390, doi:10.2116/analsci.17.387.
[11]  Murata, M.; Yano, K.; Kuroki, S.; Suzutani, T.; Katayama, Y. Protein-immobilized electrode for rapid and convenient sensing of thyroid hormone receptor-ligand interaction. Anal. Sci. 2003, 19, 1569–1573, doi:10.2116/analsci.19.1569.
[12]  Arkles, B. Hybrid polymers in the marketplace: Mix and match molecular building blocks to create better contact lenses, smoother-sailing ships, slippery surfaces, and more. Chem. Tech. 1999, 29, 7–14.
[13]  Miyoshi, M.; Hara, K.; Yokoyama, I.; Tomita, G.; Taylor, I.W.; Milthorpe, B.K. An evaluation of DNA fluorochromes, staining techniques, and analysis for flow cytometr. I. Unperturbed cell populations. J. Histochem. Cytochem. 1980, 28, 1224–1232, doi:10.1177/28.11.6159392.
[14]  El-Naggar, A.K.; Batsakis, J.G.; Teague, K.; Garnsey, L.; Barlogie, B. Single- and double-stranded RNA measurements by flow cytometry in solid neoplasms. Cytometry 1991, 12, 330–335, doi:10.1002/cyto.990120407.
[15]  Stewart, J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 1990, 4, 1–103, doi:10.1007/BF00128336.
[16]  Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys. 1952, 20, 722–725, doi:10.1063/1.1700523.
[17]  Levit-Binnun, N.; Lindner, A.B.; Zik, O.; Eshhar, Z.; Moses, E. Quantitative detection of protein arrays. Anal. Chem. 2003, 75, 1436–1441.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133