|
光子学报 2009
Propagation Properties of Focused Partially Coherent Vortex Beams in Turbulent Atmosphere
|
Abstract:
The propagation properties of focused partially coherent Gauss-Schell model vortex beams in the turbulent atmosphere were investigated based on the extended Huygens-Fresnel principle and the quadratic approximation of phase structure function. Optical intensity expression on the focal plane was obtained. By use of the expression, the intensity distribution of such kind of beam on the focal plane in the turbulent atmosphere was studied. The results show that in the turbulent atmosphere, the singularity of the vortex beam lows down with the propagation distance increasing. The maintenance of singularity is better for the vortex beams with larger topological charge and longer spatially coherent length. When the focal length and turbulent strength are fixed, the topological charge and coherent length of the source can be adjusted to control the behavior of intensity distribution on the focal plane and size of the focal spot. Vortex beams with larger topological charge can be resistant to the turbulent effects on the intensity distribution on the focal plane to some extent.