全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxidative Stress Mediated-Alterations of the MicroRNA Expression Profile in Mouse Hippocampal Neurons

DOI: 10.3390/ijms131216945

Keywords: oxidative stress, microRNA, hippocampal neurons, array analysis, Alzheimer disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxidative stress plays a critical role in the etiology and pathogenesis of neurodegenerative disorders, and the molecular mechanisms that control the neuron response to ROS have been extensively studied. However, the oxidative stress-effect on miRNA expression in hippocampal neurons has not been investigated, and little is known on the effect of ROS-modulated miRNAs on cell function. In this study, H 2O 2 was used to stimulate the mouse primary hippocampal neurons to develop an oxidative stress cell model. The alterations of miRNAs expression were detected by microarray analysis and five miRNAs were validated by real-time RT-PCR. The bioinformatic analysis of deregulated miRNAs was performed to determine their potential roles in the pathogenesis of neurological disorders. We found that H 2O 2 mediated a total of 101 deregulated miRNAs, which mainly took part in the regulation of the MAPK pathway. Among them, miR-135b and miR-708 were up-regulated significantly and their targets were predicted to be involved in DNA recombination, protein ubiquitination, protein autophosphorylation and development of neurons. These results demonstrated that oxidative stress alters the miRNA expression profile of hippocampal neurons, and the deregulated miRNAs might play a potential role in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease (AD).

References

[1]  Ramalingam, M.; Kim, S.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural. Transm 2012, 119, 891–910.
[2]  Shulman, R.G.; Rothman, D.L.; Behar, K.L.; Hyder, F. Energetic basis of brain activity: Implications for neuroimaging. Trends Neurosci 2004, 27, 489–495.
[3]  Su, B.; Wang, X.; Nunomura, A.; Moreira, P.I.; Lee, H.G.; Perry, G.; Smith, M.A.; Zhu, X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res 2008, 5, 525–532.
[4]  Braak, H.; Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 1995, 16, 271–284.
[5]  Giannakopoulos, P.; Hof, P.R.; Bouras, C. Selective vulnerability of neocortical association areas in Alzheimer’s disease. Microsc. Res. Tech 1998, 43, 16–23.
[6]  Colangelo, V.; Schurr, J.; Ball, M.J.; Pelaez, R.P.; Bazan, N.G.; Lukiw, W.J. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res 2002, 70, 462–473.
[7]  Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci 2008, 29, 609–615.
[8]  Bishop, N.A.; Lu, T.; Yankner, B.A. Neural mechanisms of ageing and cognitive decline. Nature 2010, 464, 529–535.
[9]  Smith, M.A.; Richey, P.L.; Taneda, S.; Kutty, R.K.; Sayre, L.M.; Monnier, V.M.; Perry, G. Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. NY Acad. Sci 1994, 738, 447–454.
[10]  Smith, M.A.; Perry, G.; Richey, P.L.; Sayre, L.M.; Anderson, V.E.; Beal, M.F.; Kowall, N. Oxidative damage in Alzheimer’s. Nature 1996, 382, 120–121.
[11]  Gibson, G.; Martins, R.; Blass, J.; Gandy, S. Altered oxidation and signal transduction systems in fibroblasts from Alzheimer patients. Life Sci 1996, 59, 477–489.
[12]  Curti, D.; Rognoni, F.; Gasparini, L.; Cattaneo, A.; Paolillo, M.; Racchi, M.; Zani, L.; Bianchetti, A.; Trabucchi, M.; Bergamaschi, S. Oxidative metabolism in cultured fibroblasts derived from sporadic Alzheimer’s disease (AD) patients. Neurosci. Lett 1997, 236, 13–16.
[13]  Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic. Biol. Med 2002, 32, 1050–1060.
[14]  Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297.
[15]  Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355.
[16]  Nunez-Iglesias, J.; Liu, C.C.; Morgan, T.E.; Finch, C.E.; Zhou, X.J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 2010, 5, e8898.
[17]  Milton, N.G. Role of hydrogen peroxide in the aetiology of Alzheimer’s disease: Implications for treatment. Drugs Aging 2004, 21, 81–100.
[18]  Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20.
[19]  Ramamoorthy, M.; Sykora, P.; Scheibye-Knudsen, M.; Dunn, C.; Kasmer, C.; Zhang, Y.; Becker, K.G.; Croteau, D.L.; Bohr, V.A. Sporadic Alzheimer disease fibroblasts display an oxidative stress phenotype. Free Radic. Biol. Med 2012, 53, 1371–1380.
[20]  Chang, T.C.; Mendell, J.T. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet 2007, 8, 215–239.
[21]  Coolen, M.; Bally-Cuif, L. MicroRNAs in brain development and physiology. Curr. Opin. Neurobiol 2009, 19, 461–470.
[22]  Yokota, T. MicroRNA and central nervous system. Brain Nerve 2009, 61, 167–176.
[23]  Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis 2008, 14, 27–41.
[24]  Shioya, M.; Obayashi, S.; Tabunoki, H.; Arima, K.; Saito, Y.; Ishida, T.; Satoh, J. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol. Appl. Neurobiol 2010, 36, 320–330.
[25]  Zovoilis, A.; Agbemenyah, H.Y.; Agis-Balboa, R.C.; Stilling, R.M.; Edbauer, D.; Rao, P.; Farinelli, L.; Delalle, I.; Schmitt, A.; Falkai, P. microRNA-34c is a novel target to treat dementias. EMBO J 2011, 30, 4299–4308.
[26]  Leung, A.K.; Sharp, P.A. MicroRNA functions in stress responses. Mol. Cell 2010, 40, 205–215.
[27]  Van Dam, D.; Vloeberghs, E.; Abramowski, D.; Staufenbiel, M.; de Deyn, P.P. APP23 mice as a model of Alzheimer’s disease: An example of a transgenic approach to modeling a CNS disorder. CNS Spectr 2005, 10, 207–222.
[28]  Patnaik, S.K.; Kannisto, E.; Knudsen, S.; Yendamuri, S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2010, 70, 36–45.
[29]  Schotte, D.; Chau, J.C.; Sylvester, G.; Liu, G.; Chen, C.; van der Velden, V.H.; Broekhuis, M.J.; Peters, T.C.; Pieters, R.; den Boer, M.L. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009, 23, 313–322.
[30]  Saini, S.; Yamamura, S.; Majid, S.; Shahryari, V.; Hirata, H.; Tanaka, Y.; Dahiya, R. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 2011, 71, 6208–6219.
[31]  Matsuyama, H.; Suzuki, H.I.; Nishimori, H.; Noguchi, M.; Yao, T.; Komatsu, N.; Mano, H.; Sugimoto, K.; Miyazono, K. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood 2011, 118, 6881–6892.
[32]  Lulla, R.R.; Costa, F.F.; Bischof, J.M.; Chou, P.M.; de Fatima Bonaldo, M.; Vanin, E.F.; Soares, M.B. Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma 2011, 2011, 732690.
[33]  Oberg, A.L.; French, A.J.; Sarver, A.L.; Subramanian, S.; Morlan, B.W.; Riska, S.M.; Borralho, P.M.; Cunningham, J.M.; Boardman, L.A.; Wang, L. miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One 2011, 6, e20465.
[34]  Famulski, J.K.; Trivedi, N.; Howell, D.; Yang, Y.; Tong, Y.; Gilbertson, R.; Solecki, D.J. Siah regulation of Pard3A controls neuronal cell adhesion during germinal zone exit. Science 2010, 330, 1834–1838.
[35]  Urano, Y.; Iiduka, M.; Sugiyama, A.; Akiyama, H.; Uzawa, K.; Matsumoto, G.; Kawasaki, Y.; Tashiro, F. Involvement of the mouse Prp19 gene in neuronal/astroglial cell fate decisions. J. Biol. Chem 2006, 281, 7498–7514.
[36]  Cheng, Y.; Liu, X.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell Cardiol 2009, 47, 5–14.
[37]  Targetscan. Available online: http://www.targetscan.org , accessed on 4 June 2012.
[38]  DAIAN. Available online: http://www.diana.pcbi.upenn.edu/miRGen/v3/miRGen.html , accessed on 4 June 2012.
[39]  Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57.
[40]  SPSS version 16.0; IBM Corporation: Armonk, NY, USA, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133