Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC 50 = 14.28 μg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC 50 = 212.1 μg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC 50 = 7.27 μg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC 50 = 3.44 μg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus.
References
[1]
Hsiao, N.W.; Chen, J.W.; Yang, T.C.; Orloff, G.M.; Wu, Y.Y.; Lai, C.H.; Lan, Y.C.; Lin, C.W. ISG15 over-expression inhibits replication of the Japanese encephalitis virus in human medulloblastoma cells. Antivir. Res 2010, 85, 504–511.
[2]
Paul, W.S.; Moore, P.S.; Karabatsos, N.; Flood, S.P.; Yamada, S.; Jackson, T.; Tsai, T.F. Outbreak of Japanese encephalitis on the island of Saipan, 1990. J. Infect. Dis 1993, 167, 1053–1058.
[3]
Wakai, S. Scourge of Japanese encephalitis in southwestern Nepal. Lancet 1998, 351, 759.
[4]
Unni, S.K.; R??ek, D.; Chhatbar, C.; Mishra, R.; Johri, M.K.; Singh, S.K. Japanese encephalitis virus: From genome to infectome. Microb. Infect 2011, 13, 312–321.
[5]
Solomon, T.; Dung, N.M.; Kneen, R.; Gainsborough, M.; Vaughn, D.W.; Khanh, V.T. Japanese encephalitis. J. Neurol. Neurosurg. Psychiatr 2000, 68, 405–415.
[6]
Nazmi, A.; Dutta, K.; Basu, A. Antiviral and neuroprotective role of octaguanidinium dendrimer-conjugated morpholino oligomers in Japanese encephalitis. PLoS Negl. Trop. Dis 2010, 4, e892.
[7]
Gubler, D.J. Emerging vector-borne flavivirus diseases: Are vaccines the solution. Expert Rev. Vaccines 2011, 10, 563–565.
[8]
Gould, E.A.; Solomon, T.; Mackenzie, J.S. Does antiviral therapy have a role in the control of Japanese encephalitis. Antivir. Res 2008, 78, 140–149.
[9]
Chiu, Y.H.; Chan, Y.L.; Li, T.L.; Wu, C.J. Inhibition of Japanese encephalitis virus infection by the sulfated polysaccharide extracts from Ulva lactuca. Mar. Biotechnol 2011, 14, 468–478.
[10]
Lee, E.; Pavy, M.; Young, N.; Freeman, C.; Lobigs, M. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antivir. Res 2006, 69, 31–38.
[11]
Zhang, T.; Wu, Z.; Du, J.; Hu, Y.; Liu, L.; Yang, F.; Jin, Q. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One 2012, 7, e30259.
[12]
Hendra, R.; Ahmad, S.; Sukari, A.; Shukor, M.Y.; Oskoueian, E. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) boerl fruit. Int. J. Mol. Sci 2011, 12, 3422–3431.
[13]
Dou, J.; Chen, L.; Xu, G.; Zhang, L.; Zhou, H.; Wang, H.; Zhenzhen, S.; Ke, M.; Guo, Q.; Zhou, C. Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase. Arch. Virol 2011, 156, 793–801.
[14]
Zandi, K.; Lani, R.; Wong, P.F.; Teoh, B.T.; Sam, S.S.; Johari, J.; Mustafa, M.R.; AbuBakar, S. Flavone enhances dengue virus type-2 (NGC strain) infectivity and replication in Vero cells. Molecules 2012, 17, 2437–2445.
[15]
Evers, D.L.; Chao, C.F.; Wang, X.; Zhang, Z.; Huong, S.M.; Huang, E.S. Human cytomegalovirus-inhibitory flavonoids: Studies on antiviral activity and mechanism of action. Antivir. Res 2005, 68, 124–134.
[16]
Lyu, S.Y.; Rhim, J.Y.; Park, W.B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res 2005, 28, 1293–1301.
[17]
Xu, G.; Dou, L.; Guo, Q.; Zhou, C. Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicalein in the serum. Biol. Pharm. Bull 2010, 33, 238–243.
[18]
Chiang, L.C.; Chiang, W.; Liu, M.C.; Lin, C.C. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrob. Chemother 2003, 52, 194–198.
[19]
Choi, H.J.; Kim, J.H.; Lee, C.H.; Ahn, Y.J.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antivir. Res 2009, 81, 77–81.
[20]
Kim, Y.; Narayanan, S.; Chang, K.O. Inhibition of influenza virus replication by plant derived isoquercetin. Antivir. Res 2010, 88, 227–235.
[21]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J 2011, 8, 560.
[22]
Shabrova, E.V.; Tarnopolsky, O.; Singh, A.P.; Plutzky, J.; Vorsa, N.; Quadro, L. Insights into the molecular mechanisms of the anti-atherogenic actions of flavonoids in normal and obese mice. PLoS One 2011, 6, e24634.
[23]
Chen, V.; Staub, R.E.; Baggett, S.; Chimmani, R.; Tagliaferri, M.; Cohen, I.; Shtivelman, E. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract bezielle. PLoS One 2012, 7, e30107.
[24]
Chen, L.; Dou, J.; Su, Z.; Zhou, H.; Wang, H.; Zhou, W.; Guo, Q.; Zhou, C. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice. Antivir. Res 2011, 91, 314–320.
[25]
Ahn, H.C.; Lee, S.Y.; Kim, J.W.; Son, W.S.; Shin, C.G.; Lee, B.J. Binding aspects of baicalein to HIV-1 integrase. Mol. Cells 2001, 31, 127–130.
[26]
Kitamura, K.; Honda, M.; Yoshizaki, H.; Yamamoto, S.; Nakane, H.; Fukushima, M.; Ono, K.; Tokunaga, T. Baicalin, an inhibitor of HIV-1 production in vitro. Antivir. Res 1998, 37, 131–140.
[27]
Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Tur-Kaspa, R.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral. Hepat 2012, 19, e81–e88.
[28]
Santhosh, S.R.; Parida, M.M.; Dash, P.K.; Pateriya, A.; Pattnaik, B.; Pradhan, H.K.; Tripathi, N.K.; Ambuj, S.; Gupta, N.; Saxena, P.; et al. Development and evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of Chikungunya virus. J. Clin. Virol 2007, 39, 188–193.
[29]
Park, S.I.; Park, D.H.; Saif, L.J.; Jeong, Y.J.; Shin, D.J.; Chun, Y.H.; Park, S.J.; Kim, H.J.; Hosmillo, M.; Kwon, H.J.; et al. Development of SYBR Green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus. J. Virol. Methods 2009, 159, 64–68.